Binomio De Newton
Enviado por uricab • 4 de Septiembre de 2013 • 533 Palabras (3 Páginas) • 808 Visitas
BINOMIO DE NEWTON
Vamos a deducir la fórmula que nos permitirá elevar a cualquier potencia de exponente natural, n, un binomio. Esto es la forma de obtener
Para ello veamos como se van desarrollando las potencias de (a+b)
Observando los coeficientes de cada polinomio resultante vemos que siguen esta secuencia
Esto es el triángulo de Tartaglia que se obtiene escribiendo en filas los números combinatorios desde los de numerador 1.
O sea que cada uno de esos números corresponde al valor de un número combinatorio así:
Podemos observar que cada fila empieza y termina por 1, que los números que aparecen forman una fila simétrica, o sea el primero es igual al último, el segundo igual al penúltimo, etc., y cada número es la suma de los dos que tiene encima.
Por otra parte en cualquier momento podemos hallar el valor de un número combinatorio cualquiera recordando que se calculan por la siguiente fórmula:
Por ejemplo si quiero calcular
Por otra parte, observando las potencias de (a+b) de nuevo vemos que las potencias de a empiezan elevadas a n, va disminuyendo uno a uno hasta llegar a cero. A los exponentes de b les ocurre lo contrario.
Con lo que ya tenemos podemos calcular directamente la siguiente potencia de (a+b), sus coeficientes serán la fila quinta del triángulo de Tartaglia.
Y ya podemos escribir la fórmula general del llamado binomio de Newton
que también se puede escribir de forma abreviada así:
Ejemplos:
1) Desarrollar la potencia
La fila 15 del triángulo de Tartaglia es: 1, 15, 105, 455, 1365, 3003, 5005, 6435, 6435, 5005, 3003, 1365, 455, 105, 15, 1
Que serán los valores de los coeficientes.
2) Calcular sin desarrollar el termino que ocupara el lugar 50 en el desarrollo de:
(a2+3/b)100
El primer término tiene de coeficiente , el segundo , el tercero , etc.
Por tanto el término de lugar 50 será:
= 98913082887808032681188722800. =
En general el término de lugar k+1 en el desarrollo de es
Ejercicios
3) Si el segundo término de un desarrollo de la potencia de un binomio es: ¿Cuál es el término penúltimo? ¿Y cuál es el binomio y su potencia?
El penúltimo término será el de lugar 12, pues habrá 13 términos y vale:
El binomio y su potencia será
4) Hallar el término medio del desarrollo de
Como está elevado a 14 habrá 15 términos, por tanto el término
...