La Parabola
Enviado por kitytaa • 8 de Noviembre de 2014 • 518 Palabras (3 Páginas) • 816 Visitas
INTRODUCCION
Las parábolas aparecen en diferentes situaciones de la vida cotidiana. Se puede apreciar claramente cuando lanzamos un balón bombeado o golpeamos una pelota de tenis. En la curva que describe la pelota en su movimiento se puede ver que se trata de una trayectoria parabólica. Al dibujar este desplazamiento, podemos considerar esta parábola como la representación gráfica de una función que asigna a cada desplazamiento horizontal `x' la altura `y' alcanzada por la pelota.
Una vez situada la parábola en este marco, que es un sistema de coordenadas cartesianas, son visibles dos propiedades fundamentales: tiene un punto extremo, que corresponde al instante en el que la pelota alcanza la altura máxima. Este punto es el vértice de la parábola; y la segunda, en la que las alturas a las que llega la pelota son las mismas en posiciones horizontales equidistantes de la abcisa del vértice. Por tanto, la recta paralela al eje de ordenadas que pasa por el vértice es el eje de simetría de la parábola.
En terminos generales, se podría definir la parábola como la sección cónica -al igual que la elipse y la hipérbola- que se obtiene al cortar la superficie cónica con un plano paralelo a una generatriz. Es una curva que se construye por la relación que existe entre sus puntos, un punto fijo llamado foco -'F'- y una recta llamada directriz -'d'-. La recta que pasa por `F' y es perpendicular a la directriz es el eje de la parábola y su eje de simetría. El punto de corte de la parábola con su eje es el vértice.
La parábola es una de las curvas cónicas más utilizadas en la tecnología actual. Un ejemplo son las antenas parabólicas que sirven para captar las señales de televisión emitidas por un satélite. Con ella podemos ver emisoras de televisión de todas partes del mundo. Del mismo modo, la parábola también se emplea para fabricar los faros de los coches.
Parábola
DEFINICION
Una parábola es un conjunto P de todos los puntos en el plano R2 que equidistan de una recta fija, llamada directriz; y de un punto fijo, denominado foco que pertenece a la recta.
Una parábola es una curva con dos brazos abiertos cada vez más, simétrica con respecto a la recta que pasa por el foco y perpendicular a la directriz. Esta recta se llama eje de simetría y el punto donde esta recta intersecta a la parábola se llama vértice.
CONCLUSIONES
Toda función cuadrática f(x) = ax2 + bx + c, representa una parábola tal que:
Su forma depende exclusivamente del coeficiente a de x2.
Los coeficientes b y c trasladan la parábola a izquierda, derecha, arriba o abajo.
Si a > 0, las ramas van hacia arriba y si a < 0, hacia abajo.
Cuanto más grande sea
...