Matematicas
Enviado por sharysmi • 28 de Octubre de 2013 • 697 Palabras (3 Páginas) • 343 Visitas
INTRODUCCIÓN
En este objetivo, aprendemos a calcular la propiedad que un elemento ocurre, analizamos problemas prácticos relacionados con juegos de azar; tales como: girar una ruleta, lanzar un dado, lanzar una moneda al aire, o extraer una ficha de color de una caja.
Espacio muestral.
a. Si lanzamos una moneda al aire hay dos resultados posibles que salgan cara o sello, y lo representamos en el conjunto E= {cara, sello} que es el espacio muestral del elementral.
b. Ahora si lanzamos un dado tendríamos seis resultados posibles y representamos en el conjunto E= {1, 2, 3, 4, 5, 6} que es el espacio muestral del evento.
Definición de espacio muestral.
Se llama espacio muestral al conjunto de resultados posibles que se obtienen al realizar un evento, donde el resultado está determinado por el azar. El Cardinal del conjunto corresponde al número de posibilidades.
Evento
En el ejemplo cuando se lanza al aire una moneda nos referimos a un solo resultado cara o sello y lo representamos así: E1= {C}; E2= {S}.
Los subconjuntos E1 y E2 son los eventos del espacio muestral E, en general:
Un evento, es un subconjunto dele spacio muestral E de un experimento
Probabilidad
La probabilidad tiene dos maneras de definirse:
a. La probabilidad clásica (a priori)
b. La probabilidad con base experimental (a posteriori)
Probabilidad clásica
Analicemos el siguiente caso:
Cuando lanzamos un dado tenemos una de cada seis posibilidades de que salga seis, la probabilidad de este evento está a razón de 1/6
Para determinar la probabilidad “P” de un evento debemos saber:
n= número de casos favorables = 1 (que salga 6)
N= números de casos posibles = 6 (1, 2, 3, 4, 5, 6)
Definición de probabilidad clásica
La probabilidad clásica es el cociente entre el número de caso favorable y el número de caso posibles.
P= probabilidad es = Números de casos favorables= n
Números de casos posibles N
En el caso del dado tenemos: n = 1 ; N = 6
P= n = 1 = 0,166 ; (16,66%)
N 6
Esto nos indica que la probabilidad de que salga seis es del 16,666%
Probabilidad con base experimental
Analicemos en alzar una moneda al aire 25 veces, obteniendo lo siguiente:
La Probabilidad de que salga cara es = Números de veces que salió cara= n
Núm. de veces que fue lanzada N
P= 4 =0,16 Equivale al 16%
25
La Probabilidad de que salga Sello es = P= n = 21 = 0,84 Equivalente al 84%
N 25
Definición de probabilidad con base experimental
La
...