Método De Euler
Enviado por Edgarcz • 17 de Octubre de 2013 • 1.521 Palabras (7 Páginas) • 649 Visitas
MÉTODO DE EULER
La idea del método de Euler es muy sencilla y está basada en el significado geométrico de la derivada de una función en un punto dado.
Supongamos que tuviéramos la curva solución de la ecuación diferencial y trazamos la recta tangente a la curva en el punto dado por la condición inicial.
Debido a que la recta tangente aproxima a la curva en valores cercanos al punto de tangencia, podemos tomar el valor de la recta tangente en el punto como una aproximación al valor deseado .
Así, calculemos la ecuación de la recta tangente a la curva solución de la ecuación diferencial dada en el punto . De los cursos de Geometría Analítica, sabemos que la ecuación de la recta es:
donde m es la pendiente. En este caso, sabemos que la pendiente de la recta tangente se calcula con la derivada:
Por lo tanto, la ecuación de la recta tangente es :
Ahora bien, suponemos que es un punto cercano a , y por lo tanto estará dado como . De esta forma, tenemos la siguiente aproximación:
De aquí, tenemos nuestra fórmula de aproximación:
Esta aproximación puede ser suficientemente buena, si el valor de h es realmente pequeño, digamos de una décima ó menos. Pero si el valor de h es más grande, entonces podemos cometer mucho error al aplicar dicha fórmula. Una forma de reducir el error y obtener de hecho un método iterativo, es dividir la distancia en n partes iguales (procurando que estas partes sean de longitud suficientemente pequeña) y obtener entonces la aproximación en n pasos, aplicando la fórmula anterior n veces de un paso a otro, con la nueva h igual a .
En una gráfica, tenemos lo siguiente:
Ahora bien, sabemos que:
Para obtener únicamente hay que pensar que ahora el papel de lo toma el punto , y por lo tanto, si sustituímos los datos adecuadamente, obtendremos que:
De aquí se ve claramente que la fórmula recursiva general, está dada por:
Esta es la conocida fórmula de Euler que se usa para aproximar el valor de aplicándola sucesivamente desde hasta en pasos de longitud h.
Ejemplo 1
Dada la siguiente ecuación diferencial con la condición inicial:
Aproximar .
NOTA
Primero observamos que esta ecuación sí puede resolverse por métodos tradicionales de ecuaciones diferenciales. Por ejemplo, podemos aplicar el método de separación de variables. Veamos las dos soluciones.
Solución Analítica.
Sustituyendo la condición inicial:
Por lo tanto, tenemos que la curva solución real está dada:
Y por lo tanto, el valor real que se pide es:
Solución Numérica
Aplicamos el método de Euler y para ello, observamos que la distancia entre y no es lo suficientemente pequeña. Si didimos esta distancia entre cinco obtenemos un valor de y por lo tanto, obtendremos la aproximación deseada en cinco pasos.
De esta forma, tenemos los siguientes datos:
Sustituyendo estos datos en la formula de Euler, tenemos, en un primer paso:
Aplicando nuevamente la formula de Euler, tenemos, en un segundo paso:
Y así sucesivamente hasta obtener . Resumimos los resultados en la siguiente tabla:
n
0 0 1
1 0.1 1
2 0.2 1.02
3 0.3 1.0608
4 0.4 1.12445
5 0.5 1.2144
Concluímos que el valor aproximado, usando el método de Euler es:
Puesto que en este caso, conocemos el valor verdadero, podemos usarlo para calcular el error relativo porcentual que se cometió al aplicar la formula de Euler. Tenemos que:
Ejemplo 2
Aplicar
...