ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Problemas De Asignacion


Enviado por   •  6 de Junio de 2013  •  1.849 Palabras (8 Páginas)  •  528 Visitas

Página 1 de 8

PROBLEMAS DE ASIGNACIÓN

El problema de asignación es una variación del problema original de transporte, variación en la cual las variables de decisión X(i,j) solo pueden tomar valores binarios, es decir ser cero (0) o uno (1) en la solución óptima, lo que supone que la oferta y la demanda estan perfectamente alineadas, de hecho ambas son iguales a uno (1).

Múltiples son los casos en los que como ingenieros industriales podemos hacer uso del problema de asignación para resolver diversas situaciones, entre los que cabe mencionar se encuentran la asignación de personal a maquinas, herramientas o puestos de trabajos, horarios a maestros, candidatos a vacantes, huéspedes a habitaciones, comensales a mesas, vendedores a zonas territoriales etc...

En el modelo de asignación la idea fundamental de resolución es ¿qué fuente satisface mejor el destino?, y dado que hemos asociado el modelo a una gran diversidad de circunstancias esta pregunta puede plantearse en múltiples contextos, como ¿qué candidato es el idóneo para la vacante?, o ¿qué personal es el indicado para la línea productiva?, o ¿qué personal es el mejor para ejecutar determinada tarea?. Una característica particular del modelo de asignación es que para su resolución no se hace necesario que el número de fuentes sea igual al número de destinos, lo cual es muy común en la vida real teniendo en cuenta su aplicación, pues generalmente la cantidad de aspirantes es exageradamente superior al número de vacantes (lógicamente haciendo referencia a la aplicación del modelo al contexto de oferta y demanda laboral).

MÉTODO HÚNGARO

Apartándonos un poco de la idea expresada en módulos anteriores respecto a la facilidad de resolver problemas atinentes a la investigación operativa en especial aquellos de transporte mediante el uso de herramientas tecnológicas como lo son WinQSB, LINGO, TORA, STORM, Excel etc.. vale la pena ya sea para fines académicos o de cultura ingenieril realizar la resolución del problema de asignación mediante el algoritmo que se creó para tal fin, como lo es el Método Húngaro.

El método Húngaro es un método de optimización de problemas de asignación, conocido como tal gracias a que los primeros aportes al método clásico definitivo fueron de Dénes König y Jenő Egerváry dos matemáticos húngaros.

ALGORITMO HÚNGARO, PASO 1

Antes que nada cabe recordar que el método húngaro trabaja en una matriz de costos n*m (en este caso conocida como matriz m*m, dado que el número de filas es igual al número de columnas n = m), una vez construida esta se debe encontrar el elemento más pequeño en cada fila de la matriz.

ALGORTIMO HÚNGARO, PASO 2

Una vez se cumple el procedimiento anterior se debe construir una nueva matriz n*m, en la cual se consignarán los valores resultantes de la diferencia entre cada costo y el valor mínimo de la fila a la cual cada costo corresponde (valor mínimo hallado en el primer paso).

ALGORTIMO HÚNGARO, PASO 3

Este paso consiste en realizar el mismo procedimiento de los dos pasos anteriores referidos ahora a las columnas, es decir, se halla el valor mínimo de cada columna, con la diferencia que este se halla de la matriz resultante en el segundo paso, luego se construirá una nueva matriz en la cual se consignarán los valores resultantes de la diferencia entre cada costo y el valor mínimo de la columna a la cual cada costo corresponde, matriz llamada "Matriz de Costos Reducidos".

ALGORITMO HÚNGARO, PASO 4

A continuación se deben de trazar lineas horizontales o verticales o ambas (unicamente de esos tipos) con el objetivo de cubrir todos los ceros de la matriz de costos reducidos con el menor número de lineas posibles, si el número de lineas es igual al número de filas o columnas se ha logrado obtener la solución óptima (la mejor asignación según el contexto de optimización), si el número de lineas es inferior al número de filas o columnas se debe de proceder con el paso 5.

ALGORITMO HÚNGARO, PASO 5

Este paso consiste en encontrar el menor elemento de aquellos valores que no se encuentran cubiertos por las lineas del paso 4, ahora se restará del restante de elementos que no se encuentran cubiertos por las lineas; acontinuación este mismo valor se sumará a los valores que se encuentren en las intersecciones de las lineas horizontales y verticales, una vez finalizado este paso se debe volver al paso 4.

RESOLUCIÓN DE UN PROBLEMA DE ASIGNACIÓN MEDIANTE EL MÉTODO HÚNGARO

EL PROBLEMA

La compañía de manufactura "Jimenez y Asociados" desea realizar una jornada de mantenimiento preventivo a sus tres máquinas principales A, B y C. El tiempo que demanda realizar el mantenimiento de cada máquina es de 1 día, sin embargo la jornada de mantenimiento no puede durar más de un día, teniendo en cuenta que la compañía cuenta con tres proveedores de servicios de mantenimiento debe de asignarse un equipo de mantenimiento a cada máquina para poder cumplir con la realización del mantenimiento preventivo. Teniendo en cuenta que según el grado de especialización de cada equipo prestador de servicios de mantenimiento el costo de la tarea varía para cada máquina en particular, debe de asignarse el equipo correcto a la máquina indicada con el objetivo de minimizar el costo total de la jornada. Los costos asociados se pueden observar en la siguiente tabla:

Bryan Antonio Salazar Lopez

PASO 1

Encontramos el menor elemento de cada fila

Bryan Antonio Salazar López

PASO 2

Construimos una nueva matriz con las diferencias entre los valores de la matriz original y el elemento menor de la fila a la cual corresponde.

Bryan Antonio Salazar López

PASO 3

En la matriz construida

...

Descargar como (para miembros actualizados) txt (11 Kb)
Leer 7 páginas más »
Disponible sólo en Clubensayos.com