Analisis EOQ
Enviado por lucemendoza • 25 de Enero de 2013 • 505 Palabras (3 Páginas) • 557 Visitas
]Modelo
Para determinar el punto mínimo de la curva de costo total, se fija la derivada parcial respecto a Q igual a cero:
.
A su vez, también podemos calcular la cantidad a ordenar óptima (Q) igualando los costes anuales de mantener inventario a los costes anuales por orden, obteniéndose el mismo resultado que al desarrollar la derivada. Esto se debe a que en este modelo y bajo estos supuestos se cumplirá la igualdad entre costes anuales de mantenimiento de inventario y costes anuales por orden.
Resolviendo dicha operación se establece la relación que acabamos de explicar:
A partir de ella, es posible llegar a la ecuación básica que define a la cantidad óptima de cada pedido Q.
El modelo EOQ está dado por la relación:8
En donde Q* representa la cantidad óptima de pedido, en unidades.
El modelo considera los siguientes parámetros:
D: Demanda. Unidades por año
S : Costo de emitir una orden
H : Costo asociado a mantener una unidad en inventario en un año
Q : Cantidad a ordenar
En consecuencia el costo anual de mantener unidades en inventario es H * Q/2 y el costo de emitir ordenes para el mismo período es S * D/Q. Por tanto, la función de costo total (anual) asociado a la gestión de inventarios es C(Q) = H * (Q/2) + S * (D/Q). Si derivamos esta función respecto a Q e igualamos a cero (de modo de encontrar un mínimo para la función) obtenemos la siguiente fórmula para el modelo EOQ que determina la cantidad óptima de pedido:
Para un mejor entendimiento de la metodología se presenta el siguiente gráfico.
La altura de cada triángulo representa el tamaño óptimo de pedido que minimiza la función de costos totales. La base del triángulo es el tiempo que pasa desde que se recibe la orden hasta que se termina el lote (este tiempo se conoce como el tiempo de ciclo). Adicionalmente se puede identificar el punto de reorden (ROP = d * TE) que es un nivel crítico de inventario de modo que cada vez que el inventario llegue a ese nivel se hace un pedido de Q* unidades. Dado que existe un tiempo de espera (conocido) desde que se emite la orden hasta que se dispone del lote, una vez que se termina el inventario se dispone inmediatamente del nuevo lote y de esta forma no existe quiebre de stock.
EJEMPLO: Una empresa enfrenta una demanda anual de 1.000 unidades de su principal producto. El costo de emitir una orden es de $10 y se ha estimado que el costo de almacenamiento unitario del producto durante un año es de $2,5. Asuma que el Lead Time (Tiempo de Espera) desde que se emite una orden hasta que se recibe es de 7 días. Determine la cantidad óptima de pedido utilizando EOQ que minimiza los costos totales. ¿Cuál es el punto de reorden (ROP)?
El tamaño óptimo de pedido (Q*) que minimiza los costos totales es 90 unidades. Adicionalmente,
...