Confiabilidad
Enviado por mandygefron • 29 de Septiembre de 2014 • 1.117 Palabras (5 Páginas) • 342 Visitas
Tema 12. Funciones en confiabilidad
Introducción
¿Alguna vez has comprado o pensado en comprar un automóvil nuevo? ¿Qué garantía tendrías si en vez de comprar uno nuevo, compraras uno con unos años de uso? ¿Cómo puedes estar seguro de que al adquirir un vehículo nuevo tienes garantía de que éste funcione de manera correcta?
Los ciclos de vida de los productos se estudian para estimar la confiabilidad a largo plazo. La importancia radica en que permite calcular los riesgos de fallas de los productos y planear acciones para evitar que sucedan.
Por ejemplo, se realizan pruebas a los motores de automóviles en la etapa temprana, lo que se le conoce como quemado, cuya finalidad es detectar las fallas antes de que el equipo salga al mercado, asimismo se realizan pruebas en la etapa de envejecimiento o desgaste que es cuando el producto se está acercando al cumplimiento de su vida útil, en este caso serían los kilómetros recorridos.
Explicación
12.1 Función estructura y método de trayectorias
Con esta función denotada con C (t) y también conocida como función de supervivencia, se obtiene la probabilidad de que el producto no haya fallado (sobreviva) en el tiempo t. Con lo que:
Donde:
C (t) es la función de confiabilidad de un producto en un tiempo denominado “t”.
t= Es el tiempo de vida del producto.
λ= Es el riesgo de falla y se obtiene con el inverso de la media de falla de las observaciones.
Ejemplo:
10 dispositivos fueron sometidos a pruebas extremas de calidad para determinar el tiempo promedio hasta el registro de falla, el analista determinó que los tiempos (horas) fueron:
25.12 15.81 17.65 14.52 27.42
20.15 27.3 11.32 21.74 19.46
La función de confiabilidad sería:
El tiempo promedio de falla es 20.049 horas, por lo tanto:
La función de riesgo es igual a λ, λ=1/20.049=.0498778
La gráfica de confiabilidad es:
La curva de confiabilidad muestra que al principio es muy alta y conforme pasa el tiempo disminuye. Para determinar la confiabilidad del sistema se considera un valor 1 si el sistema funciona y un 0 si no funciona.
En cuanto a la gráfica de riesgo, se observa que el riesgo de que el producto falle de principio a fin es constante.
Con esta información puedes estimar la probabilidad de falla de algún dispositivo, vamos a suponer que quieres conocer la probabilidad de que fallen antes de las 12 horas, el cálculo sería:
.450382
F (12)= .4503 = por lo que se espera que el 45.03% de los dispositivos fallen antes de las 12 horas.
En los casos simples del sistema en serie o del sistema en paralelo, la confiabilidad del sistema se puede calcular fácilmente de la función de estructura, sustituyendo los valores de las xi (i=1, 2...K) por las correspondientes confiabilidades de los componentes. De aquí que en ambos casos:
Donde:
Cs= es el índice de confiabilidad de un sistema
p= es el producto obtenido de la confiabilidad de cada componente
p1= confiabilidad del componente 1
p2= confiabilidad del componente 2
φ= función estructura de un sistema
El método de trayectorias para calcular la confiabilidad de un sistema consiste de los siguientes pasos:
1. Encontrar todas las trayectorias mínimas posibles.
2. Dado que para que el sistema opere es necesario que funcione al menos una de las trayectorias mínimas, se aplica la definición de sistema paralelo a dichas trayectorias.
3.
...