Ejercicio 12 fundamentos matematicos
Enviado por AlanRuiz18 • 13 de Abril de 2019 • Tarea • 278 Palabras (2 Páginas) • 2.356 Visitas
[pic 1]
Nombre: Alan Jaziel Ruiz
Matricula: 2894490
Ejercicio 12
Fundamentos matemáticos
Resuelve la integral [pic 2]
U= ln(x) dv= 1/x dx
Deriva U
Du= x2 dx v= ∫ x2 – dx = x3/3
X3/3 lnx - ∫ x3/3 * 1/x dx
X3/3 lnx - ∫ x*x*x/3*x dx
X3/3 lnx - ∫x2/3 dx =
= x3/3 ln – x3/(3)(3) + U
Resuelve la integral [pic 3]
U= x Dv= [e] x
Deriva U
Du= e 3x dx V= e3/3
= Xe 3x - ∫ e 3x / 3 dx
= Xe 3x * 1/3 (e 3x / 3) + C
= Xe 3x / 3 – 1/9 e 3x + C
Resuelve la integral ∫ x2cos(x)dx
U= x2 Dv= Cos (x) dx
Du= 2x V= Sin (x) dx
= x2 * Sin (x) - ∫ Sin (x) * 2x dx = x2 * Sin (x) – 2 ∫ Sin (x) dx
= X2 * Sin (X) – 2 (x * (-Cos (x)) - ∫-Cos (x) dx = X2 Sin (x) -2 (-x*cos (x) + ∫ cos (x) dx
= x2*sin(x) + 2x cos (x) – 2 Sin (x) + C
Resuelve la integral X Raiz X+2 dx
U= x+2
Du = 1 Dx
∫(U-2) Raiz U Du = ∫U 3/2 – 2 Raiz U Du = ∫U 3/2 du-2 = ∫U ½ Du
=∫x Raiz X + 2 dx = U 5/2 / 5/2 – 2 U 3/2 / 3/2 = 2/5 U 5/2 – 4/3 U 3/2
= 2/5 (x+2) 5/2 – 4/3 (x+2) 3/2 + C
...