ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Colonia


Enviado por   •  5 de Octubre de 2012  •  2.658 Palabras (11 Páginas)  •  325 Visitas

Página 1 de 11

Triángulo

El triángulo es un polígono de tres lados.

Un triángulo, en geometría, es un polígono determinado por tres rectas que se cortan dos a dos en tres puntos (que no se encuentran alineados, es decir: no colineales). Los puntos de intersección de las rectas son los vértices y los segmentos de recta determinados son los lados del triángulo. Dos lados contiguos forman uno de los ángulos interiores del triángulo.

Por lo tanto, un triángulo tiene 3 ángulos interiores, 3 ángulos exteriores, 3 lados y 3 vértices.

Si está contenido en una superficie plana se denomina triángulo, o trígono, un nombre menos común para este tipo de polígonos. Si está contenido en una superficie esférica se denomina triángulo esférico. Representado, en cartografía, sobre la superficie terrestre, se llama triángulo geodésico.

Propiedades de los triángulos

Un triángulo puede ser definido como un polígono de tres lados, o como un polígono con tres vértices.

El triángulo es el polígono más simple y el único que no tiene diagonal. Tres puntos no alineados definen siempre un triángulo (tanto en el plano como en el espacio).

Si se agrega un cuarto punto coplanar y no alineado, se obtiene un cuadrilátero que puede ser dividido en triángulos como el de la figura de la izquierda. En cambio, si el cuarto punto agregado es no coplanar y no alineado, se obtiene un tetraedro que es el poliedro más simple y está conformado por 4 caras triángulares.

Todo polígono puede ser dividido en un número finito de triángulos, esto se logra por triangulación. El número mínimo de triángulos necesarios para ésta división es , donde n es el número de lados del polígono. El estudio de los triángulos es fundamental para el estudio de otros polígonos, por ejemplo para la demostración del

En geometría euclidiana2 la suma de los tres ángulos internos de un triángulo es siempre 180°, lo que equivale a π radianes:

La suma de los ángulos de un triángulo es 180 grados.

Clasificación de los triángulos

Los triángulos se pueden clasificar por la relación entre las longitudes de sus lados o por la amplitud de sus ángulos.

Por las longitudes de sus lados, todo triángulo se clasifica:

• Como triángulo equilátero, cuando los tres lados del triángulo equilátero son del mismo tamaño (los tres ángulos internos miden 60 grados ó radianes.)

• Como triángulo isósceles (del griego ἴσος "igual" y σκέλη "piernas", es decir, "con dos piernas iguales"), si tiene dos lados de la misma longitud. Los ángulos que se oponen a estos lados tienen la misma medida. (Tales de Mileto, filósofo griego, demostró que un triángulo isósceles tiene dos ángulos iguales, estableciendo así una relación entre longitudes y ángulos; a lados iguales, ángulos iguales1 ).

• Como triángulo escaleno (del griego σκαληνός "desigual"), si todos sus lados tienen longitudes diferentes (en un triángulo escaleno no hay dos ángulos que tengan la misma medida).

Equilátero, Isósceles y Escaleno

Por la amplitud de sus ángulos los triángulos se clasifican en:

(Clasificación por amplitud de sus ángulos)

Triángulos Rectángulos

Oblicuángulos Obtusángulos

Acutángulos

• Triángulo rectángulo: si tiene un ángulo interior recto (90°). A los dos lados que conforman el ángulo recto se les denomina catetos y al otro lado hipotenusa.

• Triángulo oblicuángulo: cuando ninguno de sus ángulos interiores son rectos (90°). Por ello, los triángulos obtusángulos y acutángulos son oblicuángulos.

• Triángulo obtusángulo: si uno de sus ángulos interiores es obtuso (mayor de 90°); los otros dos son agudos (menores de 90°).

• Triángulo acutángulo: cuando sus tres ángulos interiores son menores de 90°. El triángulo equilátero es un caso particular de triángulo acutángulo.

Rectángulo Obtusángulo Acutángulo

Oblicuángulos

Clasificación según los lados y los ángulos

Los triángulos acutángulos pueden ser:

• Triángulo acutángulo isósceles: con todos los ángulos agudos, siendo dos iguales, y el otro distinto. Este triángulo es simétrico respecto de su altura.

• Triángulo acutángulo escaleno: con todos sus ángulos agudos y todos diferentes, no tiene eje de simetría.

• Triángulo acutángulo equilátero: sus tres lados y sus tres ángulos son iguales; las tres alturas son ejes de simetría (dividen al triángulo en dos triángulos iguales).

Los triángulos rectángulos pueden ser:

• Triángulo rectángulo isósceles: con un ángulo recto y dos agudos iguales (de 45° cada uno), dos lados son iguales y el otro diferente: los lados iguales son los catetos y el diferente es la hipotenusa. Es simétrico respecto a la altura de la hipotenusa, que pasa por el ángulo recto.

• Triángulo rectángulo escaleno: tiene un ángulo recto, y todos sus lados y ángulos son diferentes.

Los triángulos obtusángulos pueden ser:

• Triángulo obtusángulo isósceles: tiene un ángulo obtuso, y dos lados iguales que son los que forman el ángulo obtuso; el otro lado es mayor que éstos dos.

• Triángulo obtusángulo escaleno: tiene un ángulo obtuso y todos sus lados son diferentes.

Triángulo equilátero

isósceles

escaleno

acutángulo

rectángulo

obtusángulo

Congruencia de triángulos

Dos triángulos son congruentes si hay una correspondencia entre sus vértices de tal manera que el ángulo del vértice y los lados que lo componen, en uno de los triángulos, sean congruentes con los del otro triángulo.

Postulados de congruencia

Triángulo Postulados de congruencia

Postulado LAL (Lado, Ángulo, Lado)

Dos triángulos son congruentes si dos lados de uno tienen la misma longitud que dos lados del otro triángulo, y los ángulos comprendidos entre esos lados tienen también la misma medida.

Postulado ALA (Ángulo, Lado, Ángulo)

Dos triángulos son congruentes si dos ángulos interiores y el lado comprendido entre ellos tienen la misma medida y longitud, respectivamente. (El lado comprendido entre dos ángulos es el lado común a ellos).

Postulado LLL (Lado, Lado, Lado)

Dos triángulos son congruentes si cada lado de un triángulo tiene la misma longitud que los

...

Descargar como (para miembros actualizados) txt (19 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com