FACTOR MULTIVARIABLE
Enviado por katiaegoavil • 14 de Mayo de 2013 • 2.210 Palabras (9 Páginas) • 275 Visitas
En el segundo ejemplo, la Figura 1.1 representa gráficamente ]a potencia para niveles de significación de 0,01; 0,5 Y 0,10 con tamaños de muestra de 20 a 300 por grupo, cuando el efecto tamaño (0,35) es entre pequeño y moderado. Enfrentado a tales perspectivas, la especificación de un nivel de significación de un 0,01 requiere una muestra de 200 por grupo para conseguir el nivel deseado de potencia del 80 por ciento. Pero si se relaja el nivel alfa, se alcanza la potencia del 80 por ciento para muestras de 130 para un nivel alfa 0,05 y muestras de 100 para un nivel de significación de un 0,10.
Tales análisis permiten al investigador tomar decisiones más adecuadas en el estudio, diseño e interpretación de los resultados. Al planificar la investigación, el investigador debe estimar el efecto tamaño esperado para seleccionar entonces el tamaño de la muestra y el nivel alfa para conseguir el nivel de potencia deseado. Además de sus usos para la planificación, el análisis de potencia se utiliza también después de que el análisis ha terminado para determinar la potencia real conseguida, de tal forma que los resultados puedan ser correctamente interpretados. ¿Se deben los resultados al efecto tamaño, tamaño muestral o niveles de significación? Los analistas pueden evaluar cada uno de estos factores por su impacto sobre la significatividad o no significatividad de los resultados. El investigador puede referirse hoy en día a estudios publicados donde se analizan los detalles concretos de la determinación de la potencia o acudir a varios programas de ordenador personal que asisten en los estudios de planificación para conseguir la potencia deseada o calcular la potencia de los resultados reales.
Habiendo ya expuesto la extensión de las técnicas multivariantes desde sus orígenes univariantes o bivariantes, introduciremos ahora brevemente cada método multivariante. A partir de la introducción de las técnicas, presentamos un esquema de clasificación para ayudar en la selección de la técnica apropiada respecto de la identificación de los objetivos de investigación (relaciones de dependencia o independencia) y el tipo de datos (métricos o no métricos).
CLASIFICACION DE LAS TECNICAS MULTIVARIANTES
Para ayudarle a familiarizarse con las técnicas multivariantes, presentamos una clasificación de los métodos multivariantes. Esta clasificación se basa en tres juicios que el analista debe hacer sobre el objeto a investigar y la naturaleza de los datos: (l) ¿pueden dividirse las variables en dependientes o independientes basándose la clasificación en alguna teoría? (2) Si puede hacerse, ¿cuántas de estas variables son tratadas como dependientes en un análisis simple? (3) ¿Cómo son las variables medidas? La selección de la técnica multivariante apropiada depende de las respuestas a estas tres cuestiones.
Cuando consideramos la aplicación de las técnicas estadísticas multivariantes, la primera cuestión que nos debemos preguntar es, ¿pueden dividirse las variables mediante la clasificación de dependiente e independiente? La respuesta a esta cuestión indica si se debería utilizar un análisis de dependencia o interdependencia.
Un análisis de dependencia puede definirse como aquel en el que una variable o conjunto de variables es identificado como la variable dependiente y que va a ser explicada por otras variables conocidas como variables independientes. Como ejemplo de una dependencia técnica tenemos el análisis de regresión múltiple. Como contraste, un análisis de interdependencia es aquel en que ninguna variable o grupo de variables es definido como independiente o dependiente. Más bien, el procedimiento implica el análisis de todas las variables del conjunto simultáneamente. El análisis factorial es un ejemplo de un análisis de interdependencia.
Los diferentes métodos que constituyen el análisis de dependencia pueden ser a su vez divididos en dos tipos según: (1) el número de variables dependientes y (2) el tipo de escalas de medida empleadas para las variables. Teniendo en cuenta el número de variables dependientes, el análisis de dependencia puede clasificarse como aquel que tiene tanto una variable dependiente única como varias variables dependientes o incluso varias relaciones de dependencia/independencia. El análisis de dependencia puede incluso ser clasificado en función del tipo de escala de la variable con variables métricas (numéricas/cuantitativas) o no métricas (cualitativas/categóricas). Si el análisis implica una única variable dependiente que es métrica, la técnica apropiada es tanto el análisis de regresión múltiple como el análisis conjunto. El análisis conjunto es un caso especial. Se trata de un procedimiento de dependencia que puede tratar la variable dependiente como métrica o no métrica, en función de las circunstancias. Por otro lado, si la única variable dependiente es no métrica (categórica), entonces la técnica apropiada es, o bien el análisis discriminante múltiple, o bien los modelos de probabilidad lineal. En contraste, cuando el problema del investigador implica varias variables dependientes, hay otras cuatro técnicas estadísticas apropiadas. Si varias variables dependientes son métricas, debemos entonces mirar a las variables independientes. Si las variables independientes son no métricas, debemos elegir la técnica multivariante de análisis de la varianza. Si las variables independientes son métricas, la apropiada es la correlación canónica.
REPRESENTACION PARA EL ANALISIS MULTIVARIANTE INTERPRETACION
Como se ha podido comprobar, el análisis multivariante tiene un carácter variado y puede ser bastante poderoso. Este poder es especialmente tentador cuando el investigador no está seguro del diseño del análisis más apropiado y utiliza el análisis multivariante como un sustituto del necesario análisis conceptual. Incluso cuando se aplica correctamente, los esfuerzos por acomodar las múltiples variables y relaciones crean complejidades adicionales en los resultados y su interpretación. Por tanto, advertimos contra su uso sin la base conceptual apropiada para apoyar la técnica seleccionada sobre aquellos conceptos básicos mencionados previamente y los temas abordados en la siguiente sección.
Hemos discutido también varios asuntos particularmente aplicables al análisis multivariantes. Por tanto, mientras no exista una única «respuesta», hemos encontrado que el análisis y la interpretación de cualquier problema multivariante puede verse ayudado por un conjunto general de directrices. No se trata de ningún modo de una lista exhaustiva de consideraciones, sino que la lista representa más bien una «filosofía del análisis multivariante». Las siguientes secciones
...