Popo De Perro
Enviado por yaircr758 • 18 de Marzo de 2015 • 501 Palabras (3 Páginas) • 300 Visitas
DISTRIBUCION DE POISSON:
La distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad de que ocurra un determinado número de eventos durante cierto período de tiempo. Concretamente, se especializa en la probabilidad de ocurrencia de sucesos con probabilidades muy pequeñas, o sucesos "raros".
Características:
En este tipo de experimentos los éxitos buscados son expresados por unidad de área, tiempo, pieza, etc, etc,:
- # de defectos de una tela por m2
- # de aviones que aterrizan en un aeropuerto por día, hora, minuto, etc, etc.
- # de bacterias por cm2 de cultivo
- # de llamadas telefónicas a un conmutador por hora, minuto, etc, etc.
- # de llegadas de embarcaciones a un puerto por día, mes, etc, etc.
Para determinar la probabilidad de que ocurran x éxitos por unidad de tiempo, área, o producto, la fórmula a utilizar sería:
donde:
p(x, l) = probabilidad de que ocurran x éxitos, cuando el número promedio de ocurrencia de ellos es l
l = media o promedio de éxitos por unidad de tiempo, área o producto
e = 2.718
x = variable que nos denota el número de éxitos que se desea que ocurra
Hay que hacer notar que en esta distribución el número de éxitos que ocurren por unidad de tiempo, área o producto es totalmente al azar y que cada intervalo de tiempo es independiente de otro intervalo dado, así como cada área es independiente de otra área dada y cada producto es independiente de otro producto dado.
DISTRIBUCION HIPERGEOMETRICA
En teoría de la probabilidad la distribución hipergeométrica es una distribución discreta relacionada con muestreos aleatorios y sin reemplazo. Supóngase que se tiene una población de N elementos de los cuales, d pertenecen a la categoría A y N-d a la B. La distribución hipergeométrica mide la probabilidad de obtener x (0≤x≤d) elementos de la categoría A en una muestra sin reemplazo de n elementos de la población original.
La función de probabilidad de una variable aleatoria con distribución hipergeométrica puede deducirse a través de razonamientos combinatorios y es igual a
P(X=x)=(dx)(N−dn−x)(Nn),
donde N es el tamaño de población, n es el tamaño de la muestra extraída, d es el número de elementos en la población original que pertenecen a la categoría deseada y x es el número de elementos en la muestra que pertenecen a dicha categoría. La notación (ax) hace referencia al coeficiente binomial, es decir, el número de combinaciones posibles al seleccionar x elementos de un total a.
El valor esperado de una variable aleatoria X que sigue la distribución hipergeométrica es
...