ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

CARACTERÍSTICAS FUNCION CUADRÁTICA


Enviado por   •  16 de Enero de 2015  •  Tarea  •  384 Palabras (2 Páginas)  •  612 Visitas

Página 1 de 2

CARACTERÍSTICAS FUNCION CUADRÁTICA

Las funciones cuadráticas tienen las siguientes características:

1. El dominio es el conjunto de los números reales.

2. Son continuas en todo su dominio.

3. Siempre cortan al eje Y en el punto (0, c).

4. Cortarán al eje X (en uno o dos puntos) o no, dependiendo de las soluciones de la ecuación ax2+ bx + c = 0.

5. Si a > 0 la parábola está abierta hacia arriba y si a < 0 la parábola está abierta hacia abajo.

6. Cuanto mayor sea |a|, más estilizada es la parábola.

7. Tienen un vértice, punto donde la función alcanza un mínimo (a > 0) o un máximo

(a< 0).

8. Tiene un eje de simetría que es la recta vertical que pasa por el vértice.

9. Si a > 0, la función es creciente para valores de x a la derecha del vértice y decreciente para valores a la izquierda del vértice.

10. Si a < 0, la función es creciente para valores de x a la izquierda del vértice y decreciente para valores a la derecha del vértice.

11. Si a > 0 es convexa y si a < 0 es cóncava

Representa las funciones cuadráticas

1y = -x² + 4x - 3

2y = x² + 2x + 1

3y = x² +x + 1

4Halla el vértice y la ecuación del eje de simetría de las siguientes parábolas:

1. y= (x-1)² + 1

2. y= 3(x-1)² + 1

3. y= 2(x+1)² - 3

4. y= -3(x - 2)² - 5

5. y = x² - 7x -18

6. y = 3x² + 12x - 5

5 Una función cuadrática tiene una expresión de la forma y = x² + ax + a y pasa por el punto (1, 9). Calcular el valor de a.

6 Se sabe que la función cuadrática de ecuación y = ax² + bx + c pasa por los puntos (1,1), (0, 0) y (-1,1). Calcula a, b y c.

7 Una parábola tiene su vértice en el punto V(1, 1) y pasa por el punto (0, 2). Halla su ecuación.

8 Partiendo de la gráfica de la función f(x) = x2, representa:

1. y = x² + 2

2. y = x² - 2

3. y = (x + 2)²

4. y = (x + 2)²

5. y = (x - 2)² + 2

6. y = (x + 2)² − 2

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com