Caìda Libre
Enviado por mvn8 • 5 de Diciembre de 2012 • 1.499 Palabras (6 Páginas) • 402 Visitas
“Caida Libre”
Introducción
Se denomina caída libre al movimiento de un cuerpo bajo la acción exclusiva de un campo gravitatorio. Aunque esta definición formal excluye la influencia de otras fuerzas, como la resistencia aerodinámica, frecuentemente éstas deben ser tenidas en cuenta cuando el fenómeno tiene lugar en el seno de un fluido, como el aire o cualquier otro fluido.
El concepto es aplicable incluso a objetos en movimiento vertical ascendente sometidos a la acción desaceleradora de la gravedad o a un satélite (no propulsado) en órbita alrededor de la Tierra.
Otros sucesos referidos también como caída libre lo constituyen la trayectoria geodésica en el espacio-tiempo descrita en la teoría de la relatividad general.
Ejemplos de caída libre (deporte) los encontramos en actividades deportivas1 2 tales como dejarse caer una persona a través de la atmósfera sin sustentación aeronáutica o sin paracaídas desplegado.
Desarrollo
La caída libre como sistema de referencia
Un sistema de referencia ligado a un cuerpo en caída libre puede considerarse inercial o no inercial en función del marco teórico que esté utilizándose.
En la física clásica, la fuerza gravitatoria que se ejerce sobre una masa es proporcional a la intensidad del campo gravitatorio en la posición espacial donde se encuentre dicha masa. La constante de proporcionalidad es precisamente el valor de la masa inercial del cuerpo, tal y como establece el principio de equivalencia. En la física relativista, la gravedad es el efecto que produce sobre las trayectorias de los cuerpos la curvatura del espacio-tiempo; en este caso, la gravedad no es una fuerza, sino una geodésica. Por tanto, desde el punto de vista de la física clásica, un sistema de referencia en caída libre es un sistema acelerado por la fuerza de la gravedad y, como tal, es no inercial. Por el contrario, desde el punto de vista de la física relativista, el mismo sistema de referencia es inercial, pues aunque está acelerado en el espacio, no está acelerado en el espacio-tiempo. La diferencia radica en la propia definición de los conceptos geométricos y cinemáticos, que para cada marco teórico son completamente diferentes.
Caída libre ideal
Véase también: Ecuaciones para un cuerpo en caída libre
En la caída libre propiamente dicha o ideal, se desprecia la resistencia aerodinámica que presenta el aire al movimiento del cuerpo, analizando lo que pasaría en el vacío. En esas condiciones, la aceleración que adquiriría el cuerpo sería debida exclusivamente a la gravedad, siendo independiente de su masa; por ejemplo, si dejáramos caer una bala de cañón y una pluma en el vacío, ambos adquirirían la misma aceleración, , que es la aceleración de la gravedad y por tanto, caerían al mismo tiempo.
Por el contrario, cuando la caída tiene lugar en el seno de un fluido (como el aire), hay que considerar la resistencia aerodinámica que actúa sobre el cuerpo. Aunque técnicamente ya no es libre, esta caída se describe matemáticamente con las mismas ecuaciones del movimiento de caída libre, pero agregando el término aerodinámico correspondiente.
Ecuación del movimiento
Por la segunda ley de Newton, la fuerza que actúa sobre un cuerpo es igual al producto de su masa por la aceleración que adquiere. En caída libre sólo intervienen el peso (vertical, hacia abajo) y el rozamiento aerodinámico en la misma dirección, y sentido opuesto a la velocidad. Dentro de un campo gravitatorio aproximadamente constante, la ecuación del movimiento de caída libre es:
La aceleración de la gravedad lleva signo negativo porque se toma el eje vertical como positivo hacia arriba.
Trayectoria en caída libre
Caída libre totalmente vertical
El movimiento del cuerpo en caída libre es vertical con velocidad creciente (aproximadamente movimiento uniformemente acelerado con aceleración g) (aproximadamente porque la aceleración aumenta cuando el objeto disminuye en altura, en la mayoría de los casos la variación es despreciable). La ecuación de movimiento se puede escribir en términos la altura y:
(1)
donde:
, son la aceleración y la velocidad verticales.
, es la fuerza de rozamiento fluidodinámico (que aumenta con la velocidad).
Si, en primera aproximación, se desprecia la fuerza de rozamiento, cosa que puede hacerse para caídas desde pequeñas alturas de cuerpos relativamente compactos, en las que se alcanzan velocidades moderadas, la solución de la ecuación diferencial (1) para las velocidades y la altura vienen dada por:
donde v0 es la velocidad inicial, para una caída desde el reposo v0 = 0 y h0 es la altura inicial de caída.
Para grandes alturas u objetos de gran superficie (una pluma, un paracaídas) es necesario tener en cuenta la resistencia fluidodinámica que suele ser modelizada
...