Electronica Basica
Enviado por vetico22 • 24 de Octubre de 2013 • 3.762 Palabras (16 Páginas) • 281 Visitas
Nota: Entrega presencial o en físico
Determine el comportamiento de las siguientes sucesiones, utilizando el concepto de límite y como dominio los cuatro primeros números naturales.
a)
Lim (-1)n-12n
n→1
= (-1)1-1 *21
= (-1)0 *2 = 1*2= 2
Lim (-1) n-12n
n→2
= (-1)n-1 *2n
= (-1)2-1 *22 = (-1) *4 = -4
Lim (-1) n-12n
n→3
= (-1) n-1 * 2n
= (-1)3-1 *23 = (-1)2 * 8 = 8
Lim (-1) n-12n
n→4
= (-1)n-1 * 2n
= (-1)4-3 *24 = (-1)3 *16 = -16
b)
Lim n+2
n→1 2n-1
= 1+2 = 3 = 3
2(1)-1 2-1
Lim n+2
n→2 2n-1
= 2+2 = 4 = 4
2(2)-1 4-1 3
Lim n+2
n→3 2n-1
= 3+2 = 5 = 1
2(3)-1 6-1
Lim n+2
n→4 2n-1
= 4+2 = 6 = 6
2(4)-1 8-1 7
c) an= n+1
n
Lim n+1
n→1 n
= 1+1 = 2
1
Lim n+1
n→2 n
= 2+1 = 3
2 2
Lim n+1
n→3 n
= 3+1 = 4
3 3
Lim n+1
n→4 n
= 4+1 = 5
4 4
d) an = 7n-2_____
n(n+2)(n+1
Lim 7n-2_______
n→1 n ((n+2) (n+1)
= 7(1)-2_______ = 5
1 (1+2) (1+1) 6
Lim 7n-2_______
n→2 n ((n+2) (n+1)
= 7(2)-2_______ = 12 = 1
2(2+2) (2+1) 24 2
Lim 7n-2_______
n→3 n ((n+2) (n+1)
= 7(3)-2_______ = 19
3(3+2) (3+1) 60
Lim 7n-2_______
n→4 n ((n+2) (n+1)
= 7(4)-2_______ = 26 = 13
4(4+2) (4+1) 120 60
e) an =3n(n+2)(n+1)
Lim 3n (n+2) (n+1)
n→1
= 3(1) (1+2) (1+1) 3(5) = 15
Lim 3n (n+2) (n+1)
n→2
= 3(2) (2+2) (2+1) 6(7) = 42
Lim 3n (n+2) (n+1)
n→3
= 3(3) (3+2) (3+1) 9(9) = 81
Lim 3n (n+2) (n+1)
n→4
= 3(4) (4+2) (4+1) 12(10) = 120
an= __ n+2___
2n(n+2) (n+1
Lim n+2_______
n→1 2n (n+2) (n+1)
= 1+2_______ = 3
2(1) (1+2) (1+1) 10
Lim n+2_______
n→2 2n (n+2) (n+1)
= 2+2_______ = 4_ = 2_
2(2) (2+2) (2+1) 28 14
Lim n+2_______
n→3 2n (n+2) (n+1)
= 3+2_______ = 5_
2(3) (3+2) (3+1) 54
Lim n+2_______
n→4 2n (n+2) (n+1)
= 4+2_______ = 6_
2(4) (4+2) (4+1) 80
Determine mediante sumas parciales la serie de los (5) primeros términos de las siguientes sucesiones, luego pruebe la convergencia o divergencia de las series
a)
n= 1
s1= 2+1_ =3
12+1 2
n= 2
s2= 2+2_ = 4
22+1 5
n= 3
s3= 2+3_ = 5 = 1
32+1 10 2
n=
...