ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ensayo Sobre Redes Industriales


Enviado por   •  10 de Octubre de 2013  •  5.439 Palabras (22 Páginas)  •  627 Visitas

Página 1 de 22

Puenteo de Capa 2 (Capitulo 8, Redes)

A medida que se agregan más nodos al segmento físico de Ethernet, aumenta la contención de los medios. Ethernet es un medio compartido, lo que significa que sólo un nodo puede ntransmitir datos a la vez. Al agregar más nodos, se aumenta la demanda sobre el ancho de banda disponible y se impone una carga adicional sobre los medios. Cuando aumenta el número de nodos en un solo segmento, aumenta la probabilidad de que haya colisiones, y esto causa más retransmisiones. Una solución al problema es dividir un segmento grande en partes y separarlo en dominios de colisión aislados.

Para lograr esto, un puente guarda una tabla de direcciones MAC y sus puertos asociados. El puente luego envía o descarta tramas basándose en las entradas de su tabla. Los pasos siguientes ilustran el modo de operación de un puente:

• El puente se acaba de encender, por lo tanto la tabla de puenteo se encuentra vacía. El puente sólo espera el tráfico en ese segmento. Cuando detecta el tráfico, el puente lo procesa.

• El Host A está haciendo ping hacia el Host B. Como los datos se transmiten por todo el segmento del dominio de colisión, tanto el puente como el Host B procesan el paquete.

• El puente agrega la dirección origen de la trama a su tabla de puenteo. Como la dirección se encontraba en el campo de dirección origen y se recibió la trama en el Puerto 1, la trama debe estar asociada con el puerto 1 de la tabla.

• La dirección de destino de la trama se compara con la tabla de puenteo. Ya que la dirección no se encuentra en la tabla, aunque está en el mismo dominio de colisión, la trama se envía a otro segmento. La dirección del Host B no se registró aún ya que sólo se registra la dirección origen de una trama.

• El Host B procesa la petición del ping y transmite una repuesta ping de nuevo al Host A. El dato se transmite a lo largo de todo el dominio de colisión. Tanto el Host A como el puente reciben la trama y la procesan.

• El puente agrega la dirección origen de la trama a su tabla de puenteo. Debido a que la dirección de origen no estaba en la tabla de puenteo y se recibió en el puerto 1, la dirección origen de la trama debe estar asociada con el puerto 1 de la tabla. La dirección de destino de la trama se compara con la tabla de puenteo para verificar si su entrada está allí. Debido a que la dirección se encuentra en la tabla, se verifica la asignación del puerto. La dirección del Host A está asociada con el puente por el que la trama llegó, entonces la trama no se envía.

• El Host A ahora va a hacer ping hacia el Host C. Ya que los datos se transmiten en todo el segmento del dominio de colisión, tanto el puente como el Host B procesan la trama. El Host B descarta la trama porque no era el destino establecido.

• El puente agrega la dirección origen de la trama a su tabla de puenteo. Debido a que la dirección ya estaba registrada en la tabla de puenteo, simplemente se renueva.

• La dirección de destino de la trama se compara con la tabla de puenteo para verificar si su entrada está allí. Debido a que la dirección no se encuentra en la tabla, se envía la trama a otro segmento. La dirección del Host C no se registró aún, ya que sólo se registra la dirección origen de una trama.

• El Host C procesa la petición del ping y transmite una repuesta ping de nuevo al Host A. El dato se transmite a lo largo de todo el dominio de colisión. Tanto el Host D como el puente reciben la trama y la procesan. El Host D descarta la trama porque no era el destino establecido.

• El puente agrega la dirección origen de la trama a su tabla de puenteo. Ya que la dirección se encontraba en el campo de dirección origen y la trama se recibió en el Puerto 2, la trama debe estar asociada con el puerto 2 de la tabla.

• La dirección destino de la trama se compara con la tabla de puenteo para verificar si su entrada está allí. La dirección se encuentra en la tabla pero está asociada con el puerto 1, entonces la trama se envía al otro segmento.

• Cuando el Host D transmite datos, su dirección MAC también se registrará en la tabla de puenteo. Esta es la manera en que el puente controla el tráfico entre los dominios de colisión.

Estos son los pasos que utiliza el puente para enviar y descartar tramas que se reciben en cualquiera de sus puertos.

Conmutación a nivel de Capa 2

Por lo general, un puente sólo tiene dos puertos y divide un dominio de colisión en dos partes. Todas las decisiones que toma el puente se basan en un direccionamiento MAC o de Capa 2 y no afectan el direccionamiento lógico o de Capa 3. Así, un puente dividirá el dominio de colisión pero no tiene efecto sobre el dominio lógico o de broadcast. No importa cuántos puentes haya en la red, a menos que haya un dispositivo como por ejemplo un router que funciona en el direccionamiento de Capa 3, toda la red compartirá el mismo espacio de dirección lógica de broadcast. Un puente creará más dominios de colisión pero no agregará dominios de broadcast.

Un switch es básicamente un puente rápido multipuerto, que puede contener docenas de puertos. En vez de crear dos dominios de colisión, cada puerto crea su propio dominio de colisión. En una red de veinte nodos, existen veinte dominios de colisión si cada nodo está conectado a su propio puerto de switch. Si se incluye un puerto uplink, un switch crea veintiún dominios de colisión de un solo nodo. Un switch crea y mantiene de forma dinámica una tabla de memoria de contenido direccionable (Content Addressable Memory, CAM), que contiene toda la información MAC necesaria para cada puerto.

Operación de switches

Un switch es simplemente un puente con muchos puertos. Cuando sólo un nodo está conectado a un puerto de switch, el dominio de colisión en el medio compartido contiene sólo dos nodos. Los dos nodos en este segmento pequeño, o dominio de colisión, constan del puerto de switch y el host conectado a él. Estos segmentos físicos pequeños son llamados microsegmentos.

Otra capacidad emerge cuando sólo dos nodos se conectan. En una red que utiliza cableado de par trenzado, un par se usa para llevar la señal transmitida de un nodo al otro. Un par diferente se usa para la señal de retorno o recibida. Es posible que las señales pasen a través de ambos pares de forma simultánea. La capacidad de comunicación en ambas direcciones al mismo tiempo se conoce como full duplex.

La mayoría de los switch son capaces de admitir full duplex, como también lo son las tarjetas de interfaz de red (Network Interface Card, NIC) En el modo full duplex, no existe contención para los

...

Descargar como (para miembros actualizados) txt (32 Kb)
Leer 21 páginas más »
Disponible sólo en Clubensayos.com