Estadistica Inferencial
Enviado por irvingf04 • 29 de Mayo de 2013 • 2.947 Palabras (12 Páginas) • 311 Visitas
Estadística inferencial
La estadística inferencial es una parte de la estadística que comprende los métodos y procedimientos que por medio de la inducción determina propiedades de una población estadística, a partir de una pequeña parte de la misma. La estadística inferencial comprende como aspectos importantes:
• La toma de muestras o muestreo.
• La estimación de parámetros o variables estadísticas.
• El contraste de hipótesis.
• El diseño experimental.
• La inferencia bayesiana.
• Los métodos no paramétricos
Conceptos fundamentales
Muestreo: Se conoce como muestreo a la técnica para la selección de una muestra a partir de una población.
Al elegir una muestra se espera conseguir que sus propiedades sean extrapolables a la población. Este proceso permite ahorrar recursos, y a la vez obtener resultados parecidos a los que se alcanzarían si se realizase un estudio de toda la población.
Cabe mencionar que para que el muestreo sea válido y se pueda realizar un estudio adecuado (que consienta no solo hacer estimaciones de la población sino estimar también los márgenes de error correspondientes a dichas estimaciones), debe cumplir ciertos requisitos. Nunca podremos estar enteramente seguros de que el resultado sea una muestra representativa, pero sí podemos actuar de manera que esta condición se alcance con una probabilidad alta.
Variables estadísticas
Una variable es una característica que al ser medida en diferentes individuos es susceptible de adoptar diferentes valores.
Variables cualitativas
Son las variables que expresan distintas cualidades, características o modalidad. Cada modalidad que se presenta se denomina atributo o categoría y la medición consiste en una clasificación de dichos atributos. Las variables cualitativas pueden ser dicotómicas cuando sólo pueden tomar dos valores posibles como sí y no, hombre y mujer o son politómicas cuando pueden adquirir tres o más valores. Dentro de ellas podemos distinguir:
• Variable cualitativa ordinal o variable cuasi cuantitativa: La variable puede tomar distintos valores ordenados siguiendo una escala establecida, aunque no es necesario que el intervalo entre mediciones sea uniforme, por ejemplo: leve, moderado, fuerte.
• Variable cualitativa nominal: En esta variable los valores no pueden ser sometidos a un criterio de orden como por ejemplo los colores.
Variables cuantitativas
Son las variables que se expresan mediante cantidades numéricas. Las variables cuantitativas además pueden ser:
• Variable discreta: Es la variable que presenta separaciones o interrupciones en la escala de valores que puede tomar. Estas separaciones o interrupciones indican la ausencia de valores entre los distintos valores específicos que la variable pueda asumir. Ejemplo: El número de hijos (1, 2, 3, 4, 5).
• Variable continua: Es la variable que puede adquirir cualquier valor dentro de un intervalo especificado de valores. Por ejemplo la masa (2,3 kg, 2,4 kg, 2,5 kg,...) o la altura (1,64 m, 1,65 m, 1,66 m,...), o el salario. Solamente se está limitado por la precisión del aparato medidor, en teoría permiten que exista un valor entre dos variables.
Contraste de hipótesis
Dentro de la inferencia estadística, un contraste de hipótesis (también denominado test de hipótesis o prueba de significación) es un procedimiento para juzgar si una propiedad que se supone en una población estadística es compatible con lo observado en una muestra de dicha población. Fue iniciada por Ronald Fisher y fundamentada posteriormente por Jerzy Neyman y Karl Pearson.
Mediante esta teoría, se aborda el problema estadístico considerando una hipótesis determinada y una hipótesis alternativa , y se intenta dirimir cuál de las dos es la hipótesis verdadera, tras aplicar el problema estadístico a un cierto número de experimentos.
Está fuertemente asociada a los considerados errores de tipo I y II en estadística, que definen respectivamente, la posibilidad de tomar un suceso falso como verdadero, o uno verdadero como falso.
Existen diversos métodos para desarrollar dicho test, minimizando los errores de tipo I y II, y hallando por tanto con una determinada potencia, la hipótesis con mayor probabilidad de ser correcta. Los tipos más importantes son los test centrados, de hipótesis y alternativa simple, aleatorizados, etc. Dentro de los test no paramétricos, el más extendido es probablemente el test de la U de Mann-Whitney.
Diseño experimental
El diseño experimental es una técnica estadística que permite identificar y cuantificar las causas de un efecto dentro de un estudio experimental. En un diseño experimental se manipulan deliberadamente una o más variables, vinculadas a las causas, para medir el efecto que tienen en otra variable de interés. El diseño experimental prescribe una serie de pautas relativas qué variables hay que manipular, de qué manera, cuántas veces hay que repetir el experimento y en qué orden para poder establecer con un grado de confianza predefinido la necesidad de una presunta relación de causa-efecto.
Inferencia bayesiana
La inferencia bayesiana es un tipo de inferencia estadística en la que las evidencias u observaciones se emplean para actualizar o inferir la probabilidad de que una hipótesis pueda ser cierta. El nombre «bayesiana» proviene del uso frecuente que se hace del teorema de Bayes durante el proceso de inferencia. El teorema de Bayes se ha derivado del trabajo realizado por el reverendo Thomas Bayes. Hoy en día, uno de los campos de aplicación es en la teoría de la decisión, 1 visión artificial2 (simulación de la percepción en general)3 y reconocimiento de patrones por ordenador.
Muestreo probabilístico
Forman parte de este tipo de muestreo, todos aquellos métodos para los que puede calcular la probabilidad de extracción de cualquiera de las muestras posibles. Este conjunto de técnicas de muestreo es el más aconsejable, aunque en ocasiones no es posible optar por él. En este caso se habla de muestras probabilísticas, pues no es en rigor correcto hablar de muestras representativas dado que, al no conocer las características de la población, no es posible tener certeza de que tal característica se haya conseguido.
Sin reposición de los elementos: Cada elemento extraído se descarta para la subsiguiente extracción. Por ejemplo, si se extrae una muestra de una "población" de bombillas para estimar la vida media de las bombillas que la integran, no será posible medir más que una vez la bombilla seleccionada.
Con reposición de los elementos: Las observaciones se realizan
...