Mapa Concepto De Software Libre
Enviado por Jolysosa • 30 de Julio de 2014 • 1.694 Palabras (7 Páginas) • 269 Visitas
Funciones
Una función es una relación o correspondencia entre dos magnitudes, de manera que a cada valor de la primera le corresponde un único valor de la segunda (o ninguno), que llamamos imagen o transformado.
A la función se le suele designar por f y a la imagen por f(x), siendo x la variable independiente.
Variable independiente: la que se fija previamente
Variable dependiente: La que se deduce de la variable independiente.
Campo de existencia
Para hacer el estudio de una función, y = f(x), el primer aspecto en el que nos concentraremos será en la búsqueda de su dominio o campo de existencia, es decir, todos los valores x para los cuales existe f(x). En la práctica es más simple hallar los valores x para los cuales no existe f(x), el dominio será todo R excepto esos valores.
Por ejemplo, según la forma de la función podemos decir:
* Para funciones en forma racional:
No existe la función cuando se anula el denominador h(x), por tanto, haciendo h(x) = 0 hallamos las raíces de h(x). Pues bien, el dominio será todo R excepto esas raíces de h(x).
* Para funciones en forma de radical:
si n es un número par, entonces g(x) sólo existe en la zona positiva de x. En caso de que n sea impar suele admitirse la posibilidad de que g(x) pueda ser negativa (por ejemplo, la raíz cúbica de -8, se supone x = -2).
* Para funciones en forma:
y = arc sen g(x) ó y = arc cos g(x)
la función g(x) debe estar comprendida entre -1 y +1.
Intervalos
Un intervalo es el conjunto de todos los números comprendidos en una porción continua del eje real.
Los intervalos se clasifican en:
*Abierto
*cerrado
*Mixto
*Infinito
Intervalo abierto
Se representa a través de paréntesis y su expresión algebraica incluye los símbolos (>) mayor que o (< ) menor que y en la recta numérica el punto debe ir vacío. Por ejemplo: (a,b)= a<>
(4,7)= 4
(-2,6)= -2<>
Intervalo cerrado
Se representa a través de corchetes y su representación incluye los símbolos y en la recta numérica los puntos marcados van rellenos.
Por ejemplo:
Intervalo Mixto
Lleva corchetes en donde incluye al extremo y paréntesis donde no lo incluye.
Por ejemplo:
Intervalo infinito
La porción del eje real puede ser una semirrecta cuando uno de los límites esen este caso, el dicho lado es abierto.
Ejemplos:
Clasificación y Fórmulas
Función Inyectiva:
Una función es inyectiva si cada f(x) en el recorrido es la imagen de exactamente un único elemento del dominio. En otras palabras, de todos los pares (x,y) pertenecientes a la función, las y no se repiten.
Para determinar si una función es inyectiva, graficamos la función por medio de una tabla de pares ordenados. Luego trazamos líneas horizontales para determinar si las y (las ordenadas) se repiten o no.
Función Sobreyectiva:
Sea f una función de A en B , f es una función epiyectiva (tambien llamada sobreyectiva) , si y sólo si cada elemento de B es imagen de al menos un elemento de A , bajo f .
A elementos diferentes en un conjunto de partida le corresponden elementos iguales en un conjunto de llegada. Es decir, si todo elemento R es imagen de algún elemento X del dominio.
Ejemplo:
A = { a , e , i , o , u }
B = { 1 , 3 , 5 , 7 }
f = { ( a , 1 ) , ( e , 7 ) , ( i , 3 ) , ( o , 5 ) , ( u , 7 ) }
Simbólicamente:
f: A B es biyectiva Û f es inyectiva y f es sobreyectiva
Función Biyectiva:
Sea f una función de A en B , f es una función biyectiva , si y sólo si f es sobreyectiva e inyectiva a la vez .
Si cada elemento de B es imagen de un solo elemento de A, diremos que la función es Inyectiva. En cambio, la función es Sobreyectiva cuando todo elemento de B es imagen de, al menos, un elemento de A. Cuando se cumplen simultáneamente las dos condiciones tenemos una función BIYECTIVA.
Ejemplo:
A = { a , e , i , o , u }
B = { 1 , 3 , 5 , 7 , 9 }
f = { ( a , 5 ) , ( e , 1 ) , ( i , 9 ) , ( o , 3 ) , ( u , 7 ) }
Teorema:
Si f es biyectiva , entonces su inversa f - 1 es también una función y además biyectiva.
Función Par:
Una función
...