Matematicas
Enviado por shinrio • 6 de Noviembre de 2014 • 1.906 Palabras (8 Páginas) • 323 Visitas
MATEMATICAS PARA LA COMPUTACION
CUESTIONARIO NO. 1
Mencione que es un Sistema Aditivo y proporcione algunos ejemplos de este.
Es aquel en el cual se suman los valores de todos los símbolos utilizados para representar cantidades para así lograr la cantidad Final-Total. En ellos no importa la posición de las cantidades sino únicamente el signo y su cuantía. Son sistemas poco prácticos para representar cantidades grandes, muy grandes o muy pequeñas. Ejemplo: Sistema de Numeración Egipcio.
Que es un Sistema Proporcional y proporcione algunos ejemplos de este
Todos los sistemas señalados anteriormente se basan en el mismo principio general. Se toma un número p, base del sistema de numeración y todo número N se representa como la combinación de potencias de aquel con coeficientes que toman valores de 0 ap-1, o sea, en la forma
ak pk + ak-1 pk-1 + ... + a1 p + a0
Después, este número se denota abreviadamente
(akak-1...a1a0)p
En este caso el valor de cada cifra depende del lugar que ocupa. Por ejemplo, en el número 222, el dos figura tres veces; pero el de la extrema derecha representa dos unidades, el del medio significa dos decenas y el otro, dos centenares. (Aquí tratarnos con el sistema decimal. Si fuese empleado el sistema de base p, estos tres dos significarían, respectivamente, los valores 2, 2p y 2p 2. Los sistemas de numeración que se basan en este principio se denominan sistemas posicionales.
Al convertir el número D9B8.5D (16) a octal, el resultado es.
66334135
Al convertir el número 476.352 (8) a binario, el resultado es.
100111110.011101001
La siguiente suma da como resultado. 7H4G9A.E6 (20)
+CF7J7C.8D (20)
1CCFH3.2J
La siguiente suma da como resultado A7501B3.E2 (16)
+ 91D35CB.8C (16)
1392377F.6E
Menciona algunos ejemplos de la aplicación de los Métodos de Conteo en el campo de la computación.
En diferentes casos se tomará de algún conjunto parte de sus elementos o todos ellos, para formar diferentes agrupaciones, que se van a distinguir por el orden de sus elementos o por la naturaleza de algunos de ellos. Si los elementos que forman una agrupación son diferentes entre si, serán llamados agrupaciones sin repetición y si alguno de ellos son iguales se dirá que son agrupaciones con repetición. Permutación, combinación y ordenación
Describa como se obtiene la Magnitud Verdadera, el complemento a 1 y el complemento a 2.
Magnitud Verdadera: Es la forma de expresar los números binarios tal y como son, de forma tal que pueden ser convertidos a decimal en la manera habitual
El complemento a 1, el cual se refiere a intercambiar los valores de cada bit del número binario, ya que este sistema numérico admite sólo dos valores, el 1 y el 0; se dice que el complemento de uno es cero, y el complemento de cero es uno, es decir, el contrario; por lo tanto, cada dígito cero en el número binario es sustituido por un número uno, y viceversa.
Complemento a 2. se realiza a un número binario complementado a uno, al cual se le suma uno.
La utilidad de los complementos a uno y a dos radica en que la unidad aritmético-lógica de la unidad central de procesamiento (CPU) sólo puede realizar operaciones de suma; y para efectuar las restas realiza el procedimiento de complementar a uno y a dos, para restar sumando.
Mencione que establece el Principio Fundamental del Producto y de un ejemplo del mismo.
Este principio establece que si una operación se puede hacer de n formas y cada una de estas puede llevarse a cabo de m maneras distintas en una segunda operación, se dice que juntas las operaciones pueden realizarse de n x m formas distintas.
Ejemplo: Un algoritmo tiene 3 procedimientos (A,B,C) y cada procedimiento tiene 4 ciclos (1,2,3,4). ¿Cuántos ciclos tiene un algoritmo?
Aplicando el principio fundamental del producto se tiene que
Total de ciclos = 3 x 4 = 12
El conjunto E de resultados posibles es:
E= (A1,A2,A3,A4,B1,B2,B3,B3,C1,C2,C3,C4)
Defina que son permutaciones y de un ejemplo del mismo.
Son el número de formas distintas en que uno o varios objetos pueden colocarse, intercambiando sus lugares y siguiendo ciertas reglas específicas para guardar un orden. También se puede considerar como todo arreglo en el que es importante la posición que ocupa cada uno de los elementos que integran dicho arreglo.
Ejemplo:
Supóngase que la academia de sistemas
...