ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Método De Bairstow


Enviado por   •  14 de Enero de 2013  •  357 Palabras (2 Páginas)  •  775 Visitas

Página 1 de 2

Método de Bairstow

El método de Bairstow es un método iterativo, basado en el método de Müller y de Newton Raphson. Dado un polinonio fn(x) se encuentran dos factores, un polinomio cuadrático f2(x) = x2 – rx – s y fn-2(x). El procedimiento general para el método de Bairstow es:

Dado fn(x) y r0 y s0

Utilizando el método de NR calculamos f2(x) = x2 – r0x – s0 y fn-2(x), tal que, el residuo de fn(x)/ f2(x) sea igual a cero.

Se determinan la raíces f2(x), utilizando la formula general.

Se calcula fn-2(x)= fn(x)/ f2(x).

Hacemos fn(x)= fn-2(x)

Si el grado del polinomio es mayor que tres regresamos al paso 2

Si no terminamos

La principal diferencia de este método, respecto a otros, es que permite calcular todas las raíces de un polinomio (reales e imaginarias).

Para calcular la división de polinomios, hacemos uso de la división sintética. Así dado

fn(x) = anxn + an-1xn-1 + … + a2x2 + a1x + a0

Al dividir entre f2(x) = x2 – rx – s, tenemos como resultado el siguiente polinomio

fn-2(x) = bnxn-2 + bn-1xn-3 + … + b3x + b2

con un residuo R = b1(x-r) + b0, el residuo será cero solo si b1 y b0 lo son.

Los términos b, los calculamos utilizamos división sintética, la cual puede resolverse utilizando la siguiente relación de recurrencia

bn = an

bn-1 = an-1 + rbn

bi = ai + rbi+1 + sbi+2

Una manera de determinar los valores de r y s que hacen cero el residuo es utilizar el Método de Newton-Raphson. Para ello necesitamos una aproximación lineal de b1 y b0 respecto a r y s la cual calculamos utilizando la serie de Taylor

donde los valores de r y s están dados y calculamos los incrementos dr y ds que hacen a b1(r+dr, s+ds) y b0(r+dr, s+dr) igual a cero. El sistema de ecuaciones que tenemos que resolver es:

Bairtow muestra que las derivadas parciales pueden obtener haciendo un procedimiento similar a la división sintética, así

cn = bn

cn-1 = bn-1 + rcn

ci = bi + rci+1 + sci+2

donde

Sustituyendo término

...

Descargar como (para miembros actualizados) txt (2 Kb)
Leer 1 página más »
Disponible sólo en Clubensayos.com