ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Neuronas artificiales


Enviado por   •  12 de Junio de 2015  •  1.477 Palabras (6 Páginas)  •  147 Visitas

Página 1 de 6

Las redes de neuronas artificiales (denominadas habitualmente como RNA o en inglés como: "ANN") son un paradigma de aprendizaje y procesamiento automático inspirado en la forma en que funciona el sistema nervioso de los animales. Se trata de un sistema de interconexión de neuronas que colaboran entre sí para producir un estímulo de salida. En inteligencia artificial es frecuente referirse a ellas como redes de neuronas o redes neuronales. Las Redes Neuronales son un campo muy importante dentro de la Inteligencia Artificial. Inspirándose en el comportamiento conocido del cerebro humano (principalmente el referido a las neuronas y sus conexiones), trata de crear modelos artificiales que solucionen problemas difíciles de resolver mediante técnicas algorítmicas convencionales

Los primeros modelos de redes neuronales datan de 1943 por los neurólogos McCulloch y Pitts. Años más tarde, en 1949, Donald Hebb desarrolló sus ideas sobre el aprendizaje neuronal, quedando reflejado en la "regla de Hebb". En 1958, Rosemblatt desarrolló el perceptrón simple, y en 1960, Widrow y Hoff desarrollaron el ADALINE, que fue la primera aplicación industrial real.

En los años siguientes, se redujo la investigación, debido a la falta de modelos de aprendizaje y el estudio de Minsky y Papert sobre las limitaciones del perceptrón. Sin embargo, en los años 80, volvieron a resurgir las RNA gracias al desarrollo de la red de Hopfield, y en especial, al algoritmo de aprendizaje de retropropagación (BackPropagation) ideado por Rumelhart y McLellan en 1986 que fue aplicado en el desarrollo de los perceptrones multicapa. 2

Propiedades

Perceptrón con 2 entradas.

Una red neuronal se compone de unidades llamadas neuronas. Cada neurona recibe una serie de entradas a través de interconexiones y emite una salida. Esta salida viene dada por tres funciones:

1. Una función de propagación (también conocida como función de excitación), que por lo general consiste en el sumatorio de cada entrada multiplicada por el peso de su interconexión (valor neto). Si el peso es positivo, la conexión se denomina excitatoria; si es negativo, se denomina inhibitoria.

2. Una función de activación, que modifica a la anterior. Puede no existir, siendo en este caso la salida la misma función de propagación.

3. Una función de transferencia, que se aplica al valor devuelto por la función de activación. Se utiliza para acotar la salida de la neurona y generalmente viene dada por la interpretación que queramos darle a dichas salidas. Algunas de las más utilizadas son la función sigmoidea (para obtener valores en el intervalo [0,1]) y la tangente hiperbólica (para obtener valores en el intervalo [-1,1]).

Diseño y programación de una RNA (red neuronal artificial

Con un paradigma convencional de programación en ingeniería del software, el objetivo del programador es modelar matemáticamente (con distintos grados de formalismo) el problema en cuestión y posteriormente formular una solución (programa) mediante un algoritmo codificado que tenga una serie de propiedades que permitan resolver dicho problema. En contraposición, la aproximación basada en las RNA parte de un conjunto de datos de entrada suficientemente significativo y el objetivo es conseguir que la red aprenda automáticamente las propiedades deseadas. En este sentido, el diseño de la red tiene menos que ver con cuestiones como los flujos de datos y la detección de condiciones, y más que ver con cuestiones tales como la selección del modelo de red, la de las variables a incorporar y el pre-procesamiento de la información que formará el conjunto de entrenamiento. Asimismo, el proceso por el que los parámetros de la red se adecuan a la resolución de cada problema no se denomina genéricamente programación sino que se suele denominar entrenamiento neuronal.

Por ejemplo en una red que se va a aplicar al diagnóstico de imágenes médicas; durante la fase de entrenamiento el sistema recibe imágenes de tejidos que se sabe son cancerígenos y tejidos que se sabe son sanos, así como las respectivas clasificaciones de dichas imágenes. Si el entrenamiento es el adecuado, una vez concluido, el sistema podrá recibir imágenes de tejidos no clasificados y obtener su clasificación sano/no sano con un buen grado de seguridad. Las variables de entrada pueden ser desde los puntos individuales de cada imagen hasta un vector de características de las mismas que se puedan incorporar al sistema (por ejemplo, procedencia anatómica del tejido de la imagen o la edad del paciente al que se le extrajo la muestra).

En la industria también presentan aplicaciones muy importantes, como puede ser la cuantificación de la "aromaticidad" de los anillos aromáticos, como el benceno, a través de la estabilización de energía y la exaltación donde la susceptibilidad magnética se reduce al mínimo.3

...

Descargar como (para miembros actualizados) txt (9 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com