Search Tree implementation
Enviado por haroldalexitop • 26 de Noviembre de 2012 • Tesis • 1.042 Palabras (5 Páginas) • 356 Visitas
import java.util.Collection;
import java.util.LinkedList;
import java.util.ArrayList;
import java.util.Iterator;
import weiss.nonstandard.BinarySearchTreeWithRank;
public final class Josephus
{
/**
* Return the winner in the Josephus problem.
* Linked list implementation.
* (Can replace with ArrayList or TreeSet).
*/
public static int jos1( int people, int passes )
{
Collection theList = new LinkedList( );
// Construct the list
for( int i = 1; i <= people; i++ )
theList.add( new Integer( i ) );
// Play the game;
Iterator itr = theList.iterator( );
while( people-- != 1 )
{
for( int i = 0; i <= passes; i++ )
{
if( !itr.hasNext( ) )
itr = theList.iterator( );
itr.next( );
}
itr.remove( );
}
itr = theList.iterator( );
return ( (Integer) itr.next( ) ).intValue( );
}
/**
* Recursively construct a perfectly balanced BinarySearchTreeWithRank
* by repeated insertions in O( N log N ) time.
* t should be empty on the initial call.
*/
public static void buildTree( BinarySearchTreeWithRank t,
int low, int high )
{
int center = ( low + high ) / 2;
if( low <= high )
{
t.insert( new Integer( center ) );
buildTree( t, low, center - 1 );
buildTree( t, center + 1, high );
}
}
/**
* Return the winner in the Josephus problem.
* Search Tree implementation.
*/
public static int jos2( int people, int passes )
{
BinarySearchTreeWithRank t = new BinarySearchTreeWithRank( );
buildTree( t, 1, people );
int rank = 1;
while( people > 1 )
{
rank = ( rank + passes ) % people;
if( rank == 0 )
rank = people;
t.remove( t.findKth( rank ) );
people--;
}
return ( ( Integer ) ( t.findKth( 1 ) ) ).intValue( );
}
// Quickie main to test
public
...