Algebra.
Enviado por ma_teresa • 27 de Octubre de 2013 • Tesis • 2.692 Palabras (11 Páginas) • 214 Visitas
ALGEBRA
Álgebra, rama de las matemáticas en la que se usan letras para representar relaciones aritméticas. Al igual que en la aritmética, las operaciones fundamentales del álgebra son adición, sustracción, multiplicación, división y cálculo de raíces. La aritmética, sin embargo, no es capaz de generalizar las relaciones matemáticas, como el teorema de Pitágoras, que dice que en un triángulo rectángulo el área del cuadrado de lado la hipotenusa es igual a la suma de las áreas de los cuadrados de lado los catetos. La aritmética sólo da casos particulares de esta relación (por ejemplo, 3, 4 y 5, ya que 32 + 42 = 52). El álgebra, por el contrario, puede dar una generalización que cumple las condiciones del teorema: a2 + b2 = c2. Un número multiplicado por sí mismo se denomina cuadrado, y se representa con el superíndice 2. Por ejemplo, la notación de 3 × 3 es 32; de la misma manera, a × a es igual que a2.
Símbolos y términos específicos
Entre los símbolos algebraicos se encuentran números, letras y signos que representan las diversas operaciones aritméticas. Los números son, por supuesto, constantes, pero las letras pueden representar tanto constantes como variables. Las primeras letras del alfabeto se usan para representar constantes y las últimas para variables.
Operaciones y agrupación de símbolos
La agrupación de los símbolos algebraicos y la secuencia de las operaciones aritméticas se basa en los símbolos de agrupación, que garantizan la claridad de lectura del lenguaje algebraico. Entre los símbolos de agrupación se encuentran los paréntesis ( ), corchetes [ ], llaves { } y rayas horizontales —también llamadas vínculos— que suelen usarse para representar la división y las raíces, como en el siguiente ejemplo:
Los símbolos de las operaciones básicas son bien conocidos de la aritmética: adición (+), sustracción (-), multiplicación (×) y división (:). En el caso de la multiplicación, el signo `×' normalmente se omite o se sustituye por un punto, como ena • b. Un grupo de símbolos contiguos, como abc, representa el producto de a, b y c. La división se indica normalmente mediante rayas horizontales. Una raya oblicua, o virgulilla, también se usa para separar el numerador, a la izquierda de la raya, del denominador, a la derecha, en las fracciones. Hay que tener cuidado de agrupar los términos apropiadamente. Por ejemplo, ax + b/c - dy indica que ax y dy son términos separados, lo mismo que b/c, mientras que (ax + b)/(c - dy) representa la fracción:
Prioridad de las operaciones
Primero se hacen las multiplicaciones, después las divisiones, seguidas de las sumas y las restas. Los símbolos de agrupación indican el orden en que se han de realizar las operaciones: se hacen primero todas las operaciones dentro de un mismo grupo, comenzando por el más interno. Por ejemplo:
Otras definiciones
Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una ecuación se denomina identidad si la igualdad se cumple para cualquier valor de las variables; si la ecuación se cumple para ciertos valores de las variables pero no para otros, la ecuación es condicional. Un término es una expresión algebraica que sólo contiene productos de constantes y variables; 2x, -a, ðs4x, x2(2zy)3 son algunos ejemplos de términos. La parte numérica de un término se denomina coeficiente. Los coeficientes de cada uno de los ejemplos anteriores son 2, -1, ð y 8 (el último término se puede escribir como 8x2(zy)3).
Una expresión que contiene un solo término se denomina monomio, dos términos, binomio y tres términos, trinomio. Unpolinomio es una suma (o diferencia) finita de términos. Por ejemplo, un polinomio de n-ésimo grado en su forma general se expresa como:
En este contexto, el grado es el mayor exponente de las variables en un polinomio. Por ejemplo, si el mayor exponente de la variable es 3, como en ax3 + bx2 + cx, el polinomio es de tercer grado. Del mismo modo, la expresión xn + xn-1 + xn-2 es de n-ésimo grado.
Una ecuación lineal en una variable es una ecuación polinómica de primer grado, es decir, una ecuación de la formaax + b = 0. Se les llama ecuaciones lineales porque representan la fórmula de una línea recta en la geometría analítica.
Una ecuación cuadrática en una variable es una ecuación polinómica de segundo grado, es decir, de la formaax2 + bx + c = 0.
Un número primo es un entero (número natural) que sólo se puede dividir exactamente por sí mismo y por 1. Así, 2, 3, 5, 7, 11 y 13 son todos números primos.
Las potencias de un número se obtienen mediante sucesivas multiplicaciones del número por sí mismo. El término aelevado a la tercera potencia, por ejemplo, se puede expresar como a•a•a o a3.
Los factores primos de un cierto número son aquellos factores en los que éste se puede descomponer de manera que el número se puede expresar sólo como el producto de números primos y sus potencias. Por ejemplo, los factores primos de 15 son 3 y 5. Del mismo modo, como 60 = 22 × 3 × 5, los factores primos de 60 son 2, 3 y 5.
Operaciones con polinomios
Al hacer operaciones con polinomios, se asume que se cumplen las mismas propiedades que para la aritmética numérica. En aritmética, los números usados son el conjunto de los números racionales. La aritmética, por sí sola, no puede ir más lejos, pero el álgebra y la geometría pueden incluir números irracionales, como la raíz cuadrada de 2 y números complejos. El conjunto de todos los números racionales e irracionales constituye el conjunto de los números reales.
Propiedades de la adición
A1. La suma de dos números reales a y b cualesquiera es otro número real que se escribe a + b. Los números reales son uniformes para las operaciones de adición, sustracción, multiplicación y división; esto quiere decir que al realizar una de estas operaciones con números reales el resultado es otro número real.
A2. Cualquiera que sea la forma en que se agrupan los términos de la adición, el resultado de la suma es siempre el mismo: (a + b) + c = a + (b + c). Es la llamada propiedad asociativa de la adición.
A3. Dado un número real a cualquiera, existe el número real cero (0) conocido como elemento neutro de la adición, tal que a + 0 = 0 + a = a.
A4. Dado un número real a cualquiera, existe otro número real (-a), llamado elemento simétrico de a (o elemento recíproco de la suma), tal que a + (-a) = 0.
A5. Cualquiera que sea el orden en que se realiza la adición, la suma es siempre la misma: a + b = b + a. Es la llamadapropiedad conmutativa de la adición.
Cualquier conjunto de números que cumpla las cuatro primeras
...