ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Bases Numericas


Enviado por   •  9 de Enero de 2012  •  2.716 Palabras (11 Páginas)  •  566 Visitas

Página 1 de 11

Bases Numéricas

________________________________________

EL SISTEMA DECIMAL (Base 10):

Este sistema está formado por diez símbolos, llamados números arábicos. También es llamado sistema de base 10. Usando los diez símbolos separadamente 0, 1, 2, 3, ..., 9 nos permite representar el valor de los números en unidades individuales, pero para representar mas de nueve números es necesario combinarlos. Cuando usamos símbolos en combinación, el valor de cada uno de ellos depende de su posición con respecto al punto decimal, designando así un símbolo para las unidades, otro para las decenas, otro para las centenas, otro para los millares (de miles, no de millón), en adelante.

El símbolo correspondiente a las unidades asume la posición mas izquierda antes del punto decimal. Esta designación de posición determina que la potencia del número se corresponde con la distancia en que está del punto decimal, y es por ello que la primera posición se llama UNIDAD (100 = 1). Matemáticamente esto puede ser representado como:

unidad = 100 decena = 101 centena = 102

Por ejemplo: El valor en combinación de los símbolos 234 es determinado por la suma de los valores correspondientes a cada posición:

2 x 102 + 3 x 101 + 4 x 100

Que equivale a:

2 x 100 + 3 x 10 + 4 x 1

Efectuando las multiplicaciones esto da:

200 + 30 + 4

Cuya suma da como resultado: 234

La posición derecha del punto decimal es representada por número enteros pero negativos comensando desde -1 para la primera posición. Matemáticamente las tres primeras posiciones a la derecha del punto decimal se expresan como:

décimas 10-1 centésimas 10-2 milésimas 10-3

En un ejemplo como el anterior, pero mas elaborado podemos ver que el valor 18.947 equivale a:

1x101 + 8x100 + 9x10-1 + 4x10-2 + 7x10-3

=

1x10 + 8x1 + 9x0.1 + 4x0.01 + 7x0.001

=

10 + 8 + 0.9 + 0.04 + 0.007

Para representar un número base diez es posible colocar su valor seguido de la base en sub-índice (18.97410) o bien seguido de la letra d entre paréntesis: 645(d).

EL SISTEMA BINARIO (Base 2):

Es un sistema de números de base igual a 2, lo que nos lleva a representar los números con sólo dos símbolos distintos: 0 y 1.

Es usado para representar números del mismo modo que el sistema decimal, donde cada símbolo puede ser usado individualmente o en combinación. Por ello con sólo un símbolo en sistema binario podemos representar apenas dos valores (cero y uno) a diferencia del sistema decimal donde un sólo símbolo podía representar hasta diez. Combinando dos símbolos binarios logramos generar los cuatro primeros valores del sistema binario, que se muestran abajo:

00

01

10 (El uno se movió una posición a la izquierda)

11

Para un número mas grande, el símbolo 1 debe ser movido otra vez, haciendo aparecer una tercera columna, tal como ocirrió antes con la segunda. aplicando todas las combinaciones posibles de 0's y 1's, se obtiene:

Binario Decimal

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

En este sistema se emplea el mismo concepto de posicionamiento y pontencia que en el anterior. A continuación se ven algunos ejemplos de posicionamiento y potencia de los símbolos:

Para números enteros (a la izquierda del punto decimal):

Trigésimo Segundo (32) = 25

Decimo Sexto (16) = 24

Octavo (8) = 21

Cuarto (4) = 22

Segundo (2) = 21

Primero (1) = 20

Para números decimales (a la derecha del punto):

Un Medio = 2-1

Un Cuarto = 2-2

Un Octavo = 2-3

Cuando los símbolos 0 y 1 son usados para representar números binarios, cada símbolo es llamado dígito binario, o simplemente BIT. El número binario 10102 es llamado número binario de cuatro dígitos o número binario de 4-bits.

Este sistema es muy empleado en circuiteria digital por ser fácil de representar y transmitir electrónicamente. Comunmente (aunque no siempre) el símbolo cero del sistema binario está representado por un estado eléctrico bajo, usualmente correspondiente a la masa o a los 0V. Del mismo modo el símbolo 1 es representado por un estado alto que, por lo general, se corresponde con la tensión de fuente (suele ser 5V en sistemas digitales). Pero esto es "por lo general". Hay muchos casos donde si bien el sistema es binario los símbolos son representados eléctricamente de otra forma. Tal es el caso del estándar de comunicaciones seriales 232C donde el 1 es representado por una tensión negativa de entre 5V y 25V, mientras que el 0 es representado por una tensión positiva del mismo rango. Pero no entraremos en detalle en esto por estar fuera de los alcances de este tutorial.

CONVERSIÓN ENTRE SISTEMAS

DE BINARIO A DECIMAL:

Para poder transformar números binarios en su correspondiente decimal basta multiplicar el dígito binario (que sólo puede ser 0 o 1) por 2 elevado a la potencia correpondiente a la distancia de ese símbolo al punto decimal. Luego se suman los valores obtenidos y se consigue el número final.

Ejemplos:

102 = 1x21 + 0x20 = 1x2 + 0x1 = 2 + 0 = 210

1012 = 1x22 + 0x21 + 1x20 = 1x8 + 1x4 + 0x2 + 1x1 = 4 + 0 + 1 = 510

10012 = 1x23 + 0x22 + 0x21 + 1x20 = 1x8 + 0x4 + 0x2 + 1x1 = 8 + 0 + 0 + 1 = 910

Y para número fraccionarios:

0.0112 = 0x2-1 + 1x2-2 + 1x2-3 = 0x0.5 + 1x0.25 + 1x0.125 = 0 + 0.25 + 0.125 = 0.37510

0.1012 = 1x 2-1 + 0x 2-2 + 1 x 2-3 = 1x0.5 + 0x0.25 + 1 x0.125 = 0.5 + 0 + 0.125 = 0.62510

110.0102 = 1x22 + 1x21 + 0x20 + 0 x 2-1 + 1 x 2-2 + 0 x 2-3

1x4 + 1x2 + 0x1 + 0x0.5 + 1x0.25 + 0x.125

4 + 2 + 0 + 0 + 0.25 + 0

6.2510

Como se ve en los ejemplos el punto decimal aparece automáticamente en la posición correcta una vez efectuada la suma de los componentes.

DE DECIMAL A BINARIO:

Aquí veremos el método de divisiones y multiplicaciones sucesivas.

Para convertir un némero ENTERO decimal a una nueva base, el número decimal es sucesivamente dividido por la nueva base. Como en nuestro caso la nueva base es 2 el número será sucesivamente dividido por 2, O sea, el número original es dividido por 2, el resultado de ese cociente es dividido por 2 sucesivamente hasta que el cociente de 0. El resto de cada división es un número binario que conforma el número resultante de la conversión. El primer resultado producido (el primer resto obtenido) corresponde al bit mas próximo al punto decimal (o lo que se conoce como bit de menor peso). Los sucesivos bits se colocan

...

Descargar como (para miembros actualizados) txt (16 Kb)
Leer 10 páginas más »
Disponible sólo en Clubensayos.com