CELESTINO
Enviado por NEYMARPALACIOS • 11 de Julio de 2012 • 365 Palabras (2 Páginas) • 474 Visitas
Una ecuación diferencial ordinaria de primer orden es una
ecuación de la forma F(x, y, y ') 0 En la que aparecen
una variable independiente, una variable dependiente y
una primera derivada. La razón por la cual a las
ecuaciones de este tipo se les dice ecuaciones
diferenciales ordinarias1
En esta unidad trataremos los siguientes aspectos de
mucha Importancia en la ingeniería y sus diferentes
proyecciones a la solución de problemas así: estudio de
las ecuaciones diferenciales de primer orden,
clasificación, tipo, orden, linealidad y métodos de solución
para las ecuaciones de variables separadas y
homogéneas. Donde los tipos de ecuaciones diferenciales
a trabajar principalmente son las exactas y las lineales,
veremos sus características, su modo de identificación y
la manera de resolver cada una de ellas, dando ejemplos,
ejercicios explicativos y aplicaciones para esta unidad.
Las ecuaciones diferenciales, de primer orden,
constituyen uno de los más importantes instrumentos
teóricos y a su vez herramienta para la praxis y así
interpretar y modelar fenómenos científicos y técnicos de
la mayor variedad. Son por eso de especial importancia
práctica y teórica para los ingenieros de cualquier rama.
El área de los sistemas ha penetrado prácticamente en
todas las áreas de la tecnología, porque permite abordar y
manejar sistemáticamente aspectos de optimización y
logro de comportamientos deseados. El área de los
sistemas es transversal y genérica. Transversal por
aplicarse a varias áreas de conocimiento: sistemas
mecánicos, eléctricos, de procesos, humanos,
económicos entre otras áreas, por eso se encuentra todo
género de investigadores: ingenieros de todas las
disciplinas, economistas, físicos, matemáticos entre otros.
· Reconoce la diferencia entre una solución particular y una solución general de la ecuación diferencial.
· Define campo de direcciones correspondientes a la ecuación diferencial de primer orden.
· Identifica ecuaciones diferenciales de variables separadas y homogéneas.
· Emplea el método de separación de variables para resolver ecuaciones diferenciales de primer orden.
· Resuelve correctamente ecuaciones diferenciales homogéneas.
· Reconoce una ecuación diferencial exacta y las resuelve.
· Encuentra el factor integrante para una ecuación diferencial lineal.
· Resuelve ecuaciones diferenciales lineales.
· Identifica, distingue y resuelve correctamente ecuaciones diferenciales de Bernoulli.
· Realiza sustituciones adecuadas para poder resolver ecuaciones diferenciales con tipos ya conocidos empleando sustituciones.
...