ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Cadenas De Markov


Enviado por   •  31 de Marzo de 2014  •  5.708 Palabras (23 Páginas)  •  2.232 Visitas

Página 1 de 23

Unidad 5- cadenas de markov

INTRODUCCIÓN

4.1 introduccion a las cadenas de markov

4.2 probabilidad de transiciones estacionarias de “n” pasos

4.3 estado estable

4.4 Estados absorbentes

4.5 uso de software

CONCLUSIÓN

Bibliografía:

Unidad 4 CADENAS DE MARKOV

INTRODUCCION

Normalmente nos interesa saber cómo cambia una variable aleatoria a través del tiempo.

Por ejemplo, desearíamos conocer cómo evoluciona el precio de las acciones de una empresa en el mercado a través del tiempo.

El estudio de cómo evoluciona una variable aleatoria incluye el concepto de procesos estocásticos. Aquí veremos esos procesos, en especial uno que se conoce como Cadenas de Markov.

Las cadenas de Markov se han aplicado en áreas tales como educación, mercadotecnia, servicios de salud, finanzas, contabilidad y producción. Por ello, podemos considerarlas como una herramienta muy importante para la ingeniería industrial.

4.1 INTRODUCCIÓN A LAS CADENAS O PROCESOS DE MARKOV

La cadena de Markov recibe su nombre del matemático ruso Andrei Markov que desarrollo el método en 1907, permite encontrar la probabilidad de que un sistema se encuentre en un estado en particular en un momento dado. Algo más importante aún, es que permite encontrar el promedio a la larga o las probabilidades de estado estable para cada estado. Con esta información se puede predecir el comportamiento del sistema a través del tiempo.

Una cadena de Markov es una serie de eventos, en la cual la probabilidad de que ocurra un evento depende del evento inmediato anterior. En efecto, las cadenas de este tipo tienen memoria, "Recuerdan" el último evento y esto condiciona las posibilidades de los eventos futuros. Esta dependencia del evento anterior distingue a las cadenas de Markov de las series de eventos independientes, como tirar una moneda al aire o un dado. En los negocios, las cadenas de Markov se han utilizado para analizar los patrones de compra, los deudores morosos, para planear las necesidades de personal y para analizar el reemplazo de equipo. El análisis de Markov, llamado así en honor de un matemático ruso que desarrollo el método en 1907, permite encontrar la probabilidad de que un sistema se encuentre en un estado en particular en un momento dado. Algo más importante aún, es que permite encontrar el promedio a la larga o las probabilidades de estado estable para cada estado. Con esta información se puede predecir el comportamiento del sistema a través del tiempo. La tarea más difícil es reconocer cuándo puede aplicarse. La característica más importante que hay que buscar en la memoria de un evento a otro.

Considere el problema siguiente: la compañía K, el fabricante de un cereal para el desayuno, tiene un 25% del mercado actualmente. Datos del año anterior indican que el 88% de los clientes de K permanecían fieles ese año, pero un 12% cambiaron a la competencia. Además, el 85% de los clientes de la competencia le permanecían fieles a ella, pero 15% de los clientes de la competencia cambiaron a K. Asumiendo que estas tendencias continúen determine ¿cual es la parte que K aprovecha del mercado?:

en 2 años; y

en el largo plazo.

Esta situación es un ejemplo de un problema de cambio de marcas que sucede muy a menudo que se presenta en la venta de bienes de consumo.

Para resolver este problema hacemos uso de cadenas de Markov o procesos de Markov (qué es un tipo especial de proceso estocástico). El procedimiento se da enseguida.

Procedimiento de solución

Observe que, cada año, un cliente puede estar comprando cereal de K o de la competencia. Podemos construir un diagrama como el mostrado abajo donde los dos círculos representan a los dos estados en que un cliente puede estar y los arcos representan la probabilidad de que un cliente haga un cambio cada año entre los estados. Note que los arcos curvos indican una "transición" de un estado al mismo estado. Este diagrama es conocido como el diagrama de estado de transición (notar que todos los arcos en ese diagrama son arcos dirigidos).

Dado ese diagrama nosotros podemos construir la matriz de la transición (normalmente denotada por el símbolo P) la qué nos dice la probabilidad de hacer una transición de un estado a otro estado. Sea:

Estado 1 = cliente que compra cereal de K y

Estado 2 = cliente que compra cereal de la competencia

Tenemos así la matriz de transición P para este problema, dada por

Para estado 1 2

Del estado 1 | 0.88 0.12 |

2 | 0.15 0.85 |

Note aquí que la suma de los elementos en cada fila de la matriz de la transición es uno.

Por datos de este año sabemos que actualmente K tiene un 25% del mercado. Tenemos que la fila de la matriz que representa el estado inicial del sistema dado por:

Estado

1 2

[0.25, 0.75]

Normalmente denotamos esta fila de la matriz por s1 indicando el estado del sistema en el primer periodo (años en este ejemplo en particular). Ahora la teoría de Markov nos dice que, en periodo (año) t, el estado del sistema está dado por el st de la fila de la matriz, donde:

st = st-1(P) =st-2(P)(P) = ... = s1(P)t-1

Tenemos que tener cuidado aquí al hacer la multiplicación de la matriz ya que el orden de cálculo es importante (i.e. st-1(P) no es igual a (P) st-1 en general). Para encontrar st nosotros podríamos intentar hallar P directamente para la potencia t-1 pero, en la práctica, es mucho más fácil de calcular el estado del sistema en cada sucesivo año 1,2,3 ,..., t.

Nosotros ya sabemos el estado del sistema en el año 1 (s1) tal que el estado del sistema en el año dos (s2) está dado por:

s2 = s1P

= [0.25,0.75] |0.88 0.12 |

........|0.15 0.85 |

= [(0.25)(0.88) + (0.75)(0.15), (0.25)(0.12) + (0.75)(0.85)]

= [0.3325, 0.6675]

Note que este resultado tiene sentido intuitivo, e.g. del 25% comprando actualmente al cereal de K, 88% continúan haciendolo, aunque del 75% comprando el cereal del competidor 15% cambia a comprar cereal de K - dando un (fracción) total de (0.25)(0.88) + (0.75)(0.15) = 0.3325 comprando cereal de K.

De lo anterior, en el año dos 33.25% de las personas están en estado 1 - esto es, está comprando cereal de K. Note aquí que, como un chequeo numérico, los elementos de st deben sumar siempre uno.

En el año tres el estado del sistema se da por:

s3 = s2P

= [0.3325, 0.6675] |0.88 0.12

...

Descargar como (para miembros actualizados) txt (33 Kb)
Leer 22 páginas más »
Disponible sólo en Clubensayos.com