Carta Informal En Ingles
Enviado por sandresj • 15 de Diciembre de 2011 • 765 Palabras (4 Páginas) • 1.275 Visitas
Medidas de Distribución - Asimetría y Curtosis
Las medidas de distribución nos permiten identificar la forma en que se separan o aglomeran los valores de acuerdo a su representación gráfica. Estas medidas describen la manera como los datos tienden a reunirse de acuerdo con la frecuencia con que se hallen dentro de la información. Su utilidad radica en la posibilidad de identificar las características de la distribución sin necesidad de generar el gráfico. Sus principales medidas son la Asimetría y la Curtosis.
1. ASIMETRÍA
Esta medida nos permite identificar si los datos se distribuyen de forma uniforme alrededor del punto central (Media aritmética). La asimetría presenta tres estados diferentes [Fig.5-1], cada uno de los cuales define de forma concisa como están distribuidos los datos respecto al eje de asimetría. Se dice que la asimetría es positiva cuando la mayoría de los datos se encuentran por encima del valor de la media aritmética, la curva es Simétrica cuando se distribuyen aproximadamente la misma cantidad de valores en ambos lados de la media y se conoce como asimetría negativa cuando la mayor cantidad de datos se aglomeran en los valores menores que la media.
Figura 5-1
El Coeficiente de asimetría, se representa mediante la ecuación matemática,
Ecuación 5-9
Donde (g1) representa el coeficiente de asimetría de Fisher, (Xi) cada uno de los valores, ( ) la media de la muestra y (ni) la frecuencia de cada valor. Los resultados de esta ecuación se interpretan:
• (g1 = 0): Se acepta que la distribución es Simétrica, es decir, existe aproximadamente la misma cantidad de valores a los dos lados de la media. Este valor es difícil de conseguir por lo que se tiende a tomar los valores que son cercanos ya sean positivos o negativos (± 0.5).
• (g1 > 0): La curva es asimétricamente positiva por lo que los valores se tienden a reunir más en la parte izquierda que en la derecha de la media.
• (g1 < 0): La curva es asimétricamente negativa por lo que los valores se tienden a reunir más en la parte derecha de la media.
Desde luego entre mayor sea el número (Positivo o Negativo), mayor será la distancia que separa la aglomeración de los valores con respecto a la media.
2. CURTOSIS
Esta medida determina el grado de concentración que presentan los valores en la región central de la distribución. Por medio del Coeficiente de Curtosis, podemos identificar si existe una gran concentración de valores (Leptocúrtica), una concentración normal (Mesocúrtica) ó una baja concentración (Platicúrtica).
Figura 5-2
Para calcular el coeficiente de Curtosis se utiliza la ecuación:
Ecuacion 5-10
...