ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ciencia Y Tecnologia


Enviado por   •  1 de Febrero de 2014  •  2.455 Palabras (10 Páginas)  •  272 Visitas

Página 1 de 10

FISIK: PARTE 1-CAMPO ELECTRONICO.

Campo eléctrico

Campo eléctrico producido por un conjunto de cargas puntuales. Se muestra en rosa la suma vectorial de los campos de las cargas individuales; .

El campo eléctrico es un campo físico que es representado mediante unmodelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica.1 Se describe como un campo vectorial en el cual unacarga eléctrica puntual de valor sufre los efectos de una fuerza eléctrica dada por la siguiente ecuación:

(1)

En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominadocampo electromagnético Fμν.2

Los campos eléctricos pueden tener su origen tanto en cargas eléctricascomo en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación delcampo magnético.

Esta definición general indica que el campo no es directamente medible, sino que lo que es observable es su efecto sobre alguna carga colocada en su seno. La idea de campo eléctrico fue propuesta por Faraday al demostrar el principio de inducción electromagnética en el año 1832.

La unidad del campo eléctrico en el SI es Newton por Culombio (N/C), Voltio por metro (V/m) o, en unidades básicas, kg•m•s−3•A−1 y la ecuación dimensional es MLT-3I-1.

Definición: La presencia de carga eléctrica en una región del espacio modifica las características de dicho espacio dando lugar a un campo eléctrico. Así pues, podemos considerar un campo eléctrico como una región del espacio cuyas propiedades han sido modificadas por la presencia de una carga eléctrica, de tal modo que al introducir en dicho campo eléctrico una nueva carga eléctrica, ésta experimentará una fuerza.

El campo eléctrico se representa matemáticamente mediante el vector campo eléctrico, definido como el cociente entre la fuerza eléctrica que experimenta una carga testigo y el valor de esa carga testigo (una carga testigo positiva).

La definición más intuitiva del campo eléctrico se la puede dar mediante la ley de Coulomb. Esta ley, una vez generalizada, permite expresar el campo entre distribuciones de carga en reposo relativo. Sin embargo, para cargas en movimiento se requiere una definición más formal y completa, se requiere el uso de cuadrivectores y el principio de mínima acción. A continuación se describen ambas.

Debe tenerse presente de todas maneras que desde el punto de vista relativista, la definición de campo eléctrico es relativa y no absoluta, ya que observadores en movimiento relativo entre sí medirán campos eléctricos o "partes eléctricas" del campo electromagnético diferentes, por lo que el campo eléctrico medido dependerá del sistema de referencia escogido.

Definición mediante la ley de Coulomb[editar • editar código]

Campo eléctrico de una distribución lineal de carga. Una carga puntual P es sometida a una fuerza en dirección radial por una distribución de carga en forma de diferencial de línea ( ), lo que produce un campo eléctrico .

Partiendo de la ley de Coulomb que expresa que la fuerza entre dos cargas en reposo relativo depende del cuadrado de la distancia, matemáticamente es igual a:1

Donde:

es la permisividad eléctrica del vacío, constante definida en el sistema internacional,

son las cargas que interactúan,

es la distancia entre ambas cargas,

, es el vector de posición relativa de la carga 2 respecto a la carga 1.

y es el unitario en la dirección . Nótese que en la fórmula se está usando , esta es la permitividad en el vacío. Para calcular la interacción en otro medio es necesario cambiar la permitividad de dicho medio. ( )

La ley anterior presuponía que la posición de una partícula en un instante dado, hace que su campo eléctrico afecte en el mismo instante a cualquier otra carga. Ese tipo de interacciones en las que el efecto sobre el resto de partículas parece depender sólo de la posición de la partícula causante sin importar la distancia entre las partículas se denomina en física acción a distancia. Si bien la noción de acción a distancia fue aceptada inicialmente por el propio Newton, experimentos más cuidados a lo largo del siglo XIX llevaron a desechar dicha noción como no-realista. En ese contexto se pensó que el campo eléctrico no sólo era un artificio matemático sino un ente físico que se propaga a una velocidad finita (la velocidad de la luz) hasta afectar a otras partículas. Esa idea conllevaba modificar la ley de Coulomb de acuerdo con los requerimientos de la teoría de la relatividad y dotar de entidad física al campo eléctrico.1 Así, el campo eléctrico es una distorsión electromagnética que sufre el espacio debido a la presencia de una carga. Considerando esto se puede obtener una expresión del campo eléctrico cuando este sólo depende de la distancia entre las cargas:

Donde claramente se tiene que , la que es una de las definiciones más conocidas acerca del campo eléctrico.

Definición formal[editar • editar código]

La definición más formal de campo eléctrico, válida también para cargas moviéndose a velocidades cercanas a la de la luz, surge a partir de calcular la acción de una partícula cargada en movimiento a través de un campo electromagnético.2 Este campo forma parte de un único campo electromagnético tensorial definido por un potencial cuadrivectorial de la forma:1

(1)

donde es el potencial escalar y es el potencial vectorial tridimensional. Así, de acuerdo al principio de mínima acción, se plantea para una partícula en movimiento en un espacio cuadridimensional:

(2)

donde es la carga de la partícula, es su masa y la velocidad de la luz. Reemplazando (1) en (2) y conociendo que , donde es el diferencial de la posición definida y es la velocidad de la partícula, se obtiene:

(3)

El término dentro de la integral se conoce como el lagrangiano del sistema; derivando esta expresión con respecto a la velocidad se obtiene el momento de la partícula, y aplicando las ecuaciones de Euler-Lagrange se encuentra que la variación temporal de la cantidad de movimiento de la partícula es:

(4)

De donde se obtiene la fuerza total de la partícula.

...

Descargar como (para miembros actualizados) txt (15 Kb)
Leer 9 páginas más »
Disponible sólo en Clubensayos.com