ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Comision Mundial Del Medioambiente


Enviado por   •  8 de Octubre de 2013  •  813 Palabras (4 Páginas)  •  202 Visitas

Página 1 de 4

DEFINICION DE LA TEORIA DE CONJUNTOS

La teoría de conjuntos es una rama de las matemáticas que estudia las propiedades de los conjuntos: colecciones abstractas de objetos, consideradas como objetos en sí mismas. Los conjuntos y sus operaciones más elementales son una herramienta básica en la formulación de cualquier teoría matemática.1

Sin embargo, la teoría de los conjuntos es lo suficientemente rica como para construir el resto de objetos y estructuras de interés en matemáticas:números, funciones, figuras geométricas, ...; y junto con la lógica permite estudiar los fundamentos de esta. En la actualidad se acepta que el conjunto de axiomas de la teoría de Zermelo-Fraenkel es suficiente para desarrollar toda la matemática.

UNION

En la teoría de conjuntos, la unión de dos (o más) conjuntos es una operación que resulta en otro conjunto cuyos elementos son los elementos de los conjuntos iniciales. Por ejemplo, el conjunto de los números naturales es la unión del conjunto de los números pares positivos P y el conjunto de los número impares positivos I:

P = {2, 4, 6, ...}

I = {1, 3, 5, ...}

N = {1, 2, 3, 4, 5, 6, ...}

La unión de conjuntos se denota por el símbolo ∪, de modo que por ejemplo, N = P ∪ I.

DEFINICION

Dados dos conjuntos A y B, la unión de ambos, A ∪ B, es el conjunto que contiene todos los elementos de A y de B:

La unión de dos conjuntos A y B es otro conjunto A ∪ B cuyos elementos son todos los elementos de A o deB: |

INTERSECION

En teoría de conjuntos, la intersección de dos (o más) conjuntos es una operación que resulta en otro conjunto que contiene los elementos comunes a los conjuntos de partida. Por ejemplo, dado el conjunto de los números pares P y el conjunto de los cuadrados C de números naturales, su intersección es el conjunto de los cuadrados pares D :

P = {2, 4, 6, 8, 10,...}

C = {1, 4, 9, 16, 25, ...}

D = {4, 16, 36, 64, ...}

La intersección de conjuntos se denota por el símbolo ∩ por lo que D = P ∩ C.

DIFERENCIA

En teoría de conjuntos, la diferencia entre dos conjuntos es una operación que resulta en otro conjunto, cuyos elementos son todos aquellos en el primero de los conjuntos iniciales que no estén en el segundo. Por ejemplo, la diferencia entre el conjunto de los números naturales N y el conjunto de los números pares P es el conjunto de los números que no son pares, es decir, los impares I:

N = {1, 2, 3, 4, 5, ...}

P = {2, 4, 6, 8,...}

I = {1, 3, 5, 7, ...}

Como no hay ningún número par que no sea un número natural, la diferencia P menos N no tiene ningún elemento, por lo que es el conjunto vacío. La diferencia entre dos conjuntos A y B se denota por A \ B ó A − B, por lo que: N \ P = I, y también P − N = ∅

COMPLEMENTO

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com