ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Cómo Ha Contribuido El Dinero, Sus Funciones, La Demanda Y La Oferta Del Dinero En El Crecimiento Y Desarrollo Económico De Nuestro País En Este último Periodo De Gobierno


Enviado por   •  11 de Mayo de 2012  •  2.842 Palabras (12 Páginas)  •  1.469 Visitas

Página 1 de 12

TRABAJO COLABORATIVO 2

ETNOCIENCIA 503017_6

En el trascurso de la integración de las culturas indígenas y afro descendientes primero en la constitución e ir ganando espacios de reconocimiento como pertenecientes a una comunidad, como también en la educación haciendo un esfuerzo por conservar los conocimientos ancestrales identificándolos por ser un grupo antiguo de un alto sentido de cosmovisión como fuente, base de la vida en todo su espacio y trasformación. De ahí que en las antiguas sociedades hayan existido las matemáticas no solo representación numérica si no simbólica de intercambio de consumo pero que en su buscar continuo el hombre las fue perfeccionando con teoría, exactitud y como un equilibrio de medición cuantitativa.

Es aquí donde podemos detenernos en las diferentes culturas que le han aportado a las matemáticas como sistemas de numeración aditivos: Para ver cómo es la forma de representación aditiva consideremos el sistema jeroglífico egipcio. Por cada unidad se escribe un trazo vertical, por cada decena un símbolo en forma de arco y por cada centena, millar, decena y centena de millar y millón un jeroglífico específico. Así para escribir 754 usaban 7 jeroglíficos de centenas 5 de decenas y 4 trazos. De alguna forma todas las unidades están físicamente presentes.

Los sistemas aditivos son aquellos que acumulan los símbolos de todas las unidades, decenas... como sean necesarios hasta completar el número. Una de sus características es por tanto que se pueden poner los símbolos en cualquier orden, aunque en general se ha preferido una determinada disposición.

Han sido de este tipo las numeraciones egipcia, sumeria (de base 60), hitita, cretense, azteca (de base 20), romana y las alfabéticas de los griegos, armenios, judíos y árabes.

El Sistema de Numeración Egipcio

Desde el tercer milenio A.C. los egipcios usaron un sistema describir los números en base diez utilizando los jeroglíficos de la figura para representar los distintos ordenes de unidades.

Se usaban tantos de cada uno cómo fuera necesario y se podían escribir indistintamente de izquierda a derecha, al revés o de arriba abajo, cambiando la orientación de las figuras según el caso.

Al ser indiferente el orden se escribían a veces según criterios estéticos, y solían ir acompañados de los jeroglíficos correspondientes al tipo de objeto (animales, prisioneros, vasijas etc.) cuyo número indicaban. En la figura aparece el 276 tal y como figura en una estela en Karnak.

Estos signos fueron utilizados hasta la incorporación de Egipto al imperio romano. Pero su uso quedó reservado a las inscripciones monumentales, en el uso diario fue sustituido por la escritura hierática y demótica, formas más simples que permitían mayor rapidez y comodidad a los escribas

En estos sistemas de escritura los grupos de signos adquirieron una forma propia, y así se introdujeron símbolos particulares para 20, 30....90....200, 300.....900, 2000, 3000...... con lo que disminuye el número de signos necesarios para escribir una cifra.

El Sistema de Numeración Griego

El primer sistema de numeración griego se desarrolló hacia el 600 A.C. Era un sistema de base decimal que usaba los símbolos de la figura siguiente para representar esas cantidades. Se utilizaban tantas de ellas como fuera necesario según el principio de las numeraciones aditivas.

Para representar la unidad y los números hasta el 4 se usaban trazos verticales. Para el 5, 10 y 100 las letras correspondientes a la inicial de la palabra cinco (pente), diez (deka) y mil (khiloi). Por este motivo se llama a este sistema acrofónico.

Los símbolos de 50, 500 y 5000 se obtienen añadiendo el signo de 10, 100 y 1000 al de 5, usando un principio multiplicativo. Progresivamente este sistema ático fue reemplazado por el jónico, que empleaba las 24 letras del alfabeto griego junto con algunos otros símbolos según la tabla siguiente

De esta forma los números parecen palabras, ya que están compuestos por letras, y a su vez las palabras tienen un valor numérico, basta sumar las cifras que corresponden a las letras que las componen. Esta circunstancia hizo aparecer una nueva suerte de disciplina mágica que estudiaba la relación entre los números y las palabras. En algunas sociedades como la judía y la árabe, que utilizaban un sistema similar, el estudio de esta relación ha tenido una gran importancia y ha constituido una disciplina aparte: la kábala, que persigue fines místicos y adivinatorios.

Sistemas de Numeración Híbridos

En estos sistemas se combina el principio aditivo con el multiplicativo. Si para representar 500 los sistemas aditivos recurren a cinco representaciones de 100, los híbridos utilizan la combinación del 5 y el 100. Pero siguen acumulando estas combinaciones de signos para los números más complejos. Por lo tanto sigue siendo innecesario un símbolo para el 0. Para representar el 703 se usa la combinación del 7 y el 100 seguida del 3.

El orden en la escritura de las cifras es ahora fundamental para evitar confusiones, se dan así los pasos para llegar al sistema posicional, ya que si los signos del 10, 100 etc. se repiten siempre en los mismos lugares, pronto alguien piensa en suprimirlos, dándolos por supuestos y se escriben sólo las cifras correspondientes a las decenas, centenas etc. .Pero para ello es necesario un cero, algo que indique que algún orden de magnitud está vacío y no se confundan el 307 con 370, 3070 ...

Además del chino clásico han sido sistemas de este tipo el asirio, arameo, etíope y algunos del subcontinente indio cómo el tamil, el malayalam y el cingalés.

El Sistema de Numeración Chino

La forma clásica de escritura de los números en China se empezó a usar desde el 1500 A.C. aproximadamente. Es un sistema decimal estricto que usa las unidades y los distintas potencias de 10. Utiliza los ideogramas de la figura

y usa la combinación de los números hasta el diez con la decena, centena, millar y decena de millar para según el principio multiplicativo representar 50, 700 ó 3000. El orden de escritura se hace fundamental, ya que 5 10 7 igual podría representar 57 que 75.

Tradicionalmente se ha escrito de arriba abajo aunque también se hace de izquierda a derecha como en el ejemplo de la figura. No es necesario un símbolo para el cero siempre y cuando se pongan todos los ideogramas, pero aún así a veces se

suprimían los correspondientes a las potencias de

...

Descargar como (para miembros actualizados) txt (16 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com