Distribucion Normal
Enviado por susansoledad • 26 de Mayo de 2015 • 902 Palabras (4 Páginas) • 183 Visitas
Una distribución normal de media μ y desviación típica σ se designa por N(μ, σ). Su gráfica es la campana de Gauss:
El área del recinto determinado por la función y el eje de abscisas es igual a la unidad.
Al ser simétrica respecto al eje que pasa por x = µ, deja un área igual a 0.5 a la izquierda y otra igual a 0.5 a la derecha.
La probabilidad equivale al área encerrada bajo la curva.
Distribución normal estándar
N(0, 1)
La distribución normal estándar, o tipificada o reducida, es aquella que tiene por media el valorcero, μ =0, y por desviación típica la unidad, σ =1.
La probabilidad de la variable X dependerá del área del recinto sombreado en la figura. Y para calcularla utilizaremos una tabla.
Tipificación de la variable
Para poder utilizar la tabla tenemos que transformar la variable X que sigue una distribución N(μ, σ) en otra variable Z que siga una distribución N(0, 1).
Cálculo de probabiladades en distribuciones normales
La tabla nos da las probabilidades de P(z ≤ k), siendo z la variable tipificada.
Estas probabilidades nos dan la función de distribución Φ(k).
Φ(k) = P(z ≤ k)
Búsqueda en la tabla de valor de k
Unidades y décimas en la columna de la izquierda.
Céntesimas en la fila de arriba.
P(Z ≤ a)
P(Z > a) = 1 - P(Z ≤ a)
P(Z ≤ −a) = 1 − P(Z ≤ a)
P(Z > −a) = P(Z ≤ a)
P(a < Z ≤ b ) = P(Z ≤ b) − P(Z ≤ a)
P(−b < Z ≤ −a ) = P(a < Z ≤ b )
Nos encontramos con el caso inverso a los anteriores, conocemos el valor de la probabilidad y se trata de hallar el valor de la abscisa. Ahora tenemos que buscar en la tabla el valor que más se aproxime a K.
P(−a < Z ≤ b ) = P(Z ≤ b) − [ 1 − P(Z ≤ a)]
p = K
Para calcular la variable X nos vamos a la fórmula de la tipificación.
Aproximación de la binomial por la normal
Teorema de Moivre
Si:
n · p ≥ 5 y n · q ≥ 5.
La distribución binomial B(n, p) se puede aproximar mediante una distribución normal:
Ejercicios
En una ciudad se estima que la temperatura máxima en el mes de junio si una distribución normal, con media 23° y desviación típica 5°. Calcular el número de días del mes en los que se espera alcanzar máximas entre 21° y 27°.
La media y los que de los pesos de 500 estudiantes de un colegio es 70 kg y la desviación típica 3 kg. Suponiendo que los pesos se distribuyen normalmente, hallar cuántos estudiantes pesan:
1. Entre 60 kg y 75 kg.
2.Más de 90 kg.
3.Menos de 64 kg.
4.64 kg.
5.64
...