ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Ejercicios resueltos mercadeo


Enviado por   •  11 de Septiembre de 2015  •  Apuntes  •  2.111 Palabras (9 Páginas)  •  175 Visitas

Página 1 de 9

1.-Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante dispone para la confección de 750 m de tejido de algodón y 1000 m de tejido de poliéster. Cada pantalón precisa 1 m de algodón y 2 m de poliéster. Para cada chaqueta se necesitan 1.5 m de algodón y 1 m de poliéster. El precio del pantalón se fija en 50 € y el de la chaqueta en 40 €. ¿Qué número de pantalones y chaquetas debe suministrar el fabricante a los almacenes para que estos consigan una venta máxima?

  1. Elección de las incógnitas.

x = número de pantalones

y = número de chaquetas

  1.  Función objetivo

f(x,y)= 50x + 40y

  1.  Restricciones

Para escribir las restricciones vamos a ayudarnos de una tabla:

 

pantalones

chaquetas

disponible

algodón

1

1,5

750

poliéster

2

1

1000

x + 1.5y ≤ 750 [pic 1] 2x+3y≤1500

2x + y ≤ 1000

Como el número de pantalones y chaquetas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

  1.  Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

[pic 2]

Resolvemos gráficamente la inecuación: 2x + 3y ≤ 1500, para ello tomamos un punto del plano, por ejemplo el (0,0).

2·0 + 3·0 ≤ 1 500

Como 0 ≤ 1 500 entonces el punto (0,0) se encuentra en el semiplano donde se cumple la desigualdad.

De modo análogo resolvemos 2x + y ≤ 1000.

2·0 + 0 ≤ 1 00

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

[pic 3]

  1.  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

La solución óptima, si es única, se encuentra en un vértice del recinto. estos son las soluciones a los sistemas:

2x + 3y = 1500; x = 0 (0, 500)

2x + y = 1000; y = 0 (500, 0)

2x + 3y =1500; 2x + y = 1000 (375, 250)

[pic 4]

  1.  Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

f(x, y) = 50x + 40y

f(0, 500) = 50 · 0 + 40 · 500 = 20000 €

f(500, 0) = 50 · 500 + 40 · 0 = 25000 €

f(375, 250) = 50 · 375 + 40 · 250 = 28750 €    Máximo

La solución óptima es fabricar 375 pantalones 250 chaquetas para obtener un beneficio de 28750 €.

2.- Una compañía fabrica y venden dos modelos de lámpara L1 y L2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L1 y de 30 minutos para el L2; y un trabajo de máquina para L1 y de 10 minutos para L2. Se dispone para el trabajo manual de 100 horas al mes y para la máquina 80 horas al mes. Sabiendo que el beneficio por unidad es de 15 y 10 euros para L1 y L2, respectivamente, planificar la producción para obtener el máximo beneficio.

  1. Elección de las incógnitas.

x = nº de lámparas L1

y = nº de lámparas L2

  1.  Función objetivo

f(x, y) = 15x + 10y

  1.  Restricciones

Pasamos los tiempos a horas

20 min = 1/3 h

30 min = 1/2 h

10 min = 1/6 h

Para escribir las restricciones vamos a ayudarnos de una tabla:

L1

L2

Tiempo

Manual

1/3

1/2

100

Máquina

1/3

1/6

80

1/3x + 1/2y ≤ 100

1/3x + 1/6y ≤ 80

Como el número de lámparas son números naturales, tendremos dos restricciones más:

x ≥ 0

y ≥ 0

  1.  Hallar el conjunto de soluciones factibles

Tenemos que representar gráficamente las restricciones.

Al ser x ≥ 0 e y ≥ 0, trabajaremos en el primer cuadrante.

Representamos las rectas, a partir de sus puntos de corte con los ejes.

Resolvemos gráficamente la inecuación: 1/3 x + 1/2 y ≤ 100; para ello tomamos un punto del plano, por ejemplo el (0,0).

1/3·0 + 1/2·0 ≤ 100

1/3·0 + 1/6·0 ≤ 80

La zona de intersección de las soluciones de las inecuaciones sería la solución al sistema de inecuaciones, que constituye el conjunto de las soluciones factibles.

[pic 5]

  1.  Calcular las coordenadas de los vértices del recinto de las soluciones factibles.

La solución óptima si es única se encuentra en un vértice del recinto. estos son las soluciones a los sistemas:

1/3x + 1/2y = 100; x = 0 (0, 200)

1/3x + 1/6y = 80; y = 0(240, 0) 

1/3x + 1/2y = 100; 1/3x + 1/6y = 80(210, 60) 

[pic 6]

  1.  Calcular el valor de la función objetivo

En la función objetivo sustituimos cada uno de los vértices.

f(x, y) = 15x + 10y

f(0, 200) = 15·0 + 10·200 = 2 000 €

f(240, 0 ) = 15·240 + 10·0 = 3 600 €

f(210, 60) = 15·210 + 10·60 = 3 750 €    Máximo

La solución óptima es fabricar 210 del modelo L1 y 60 del modelo L1 para obtener un beneficio de 3 750 € .

3.-Una empresa de transportes tiene dos tipos de camiones, los del tipo A con un espacio refrigerado de 20 m3 y un espacio no refrigerado de 40 m3. Los del tipo B, con igual cubicaje total, al 50% de refrigerado y no refrigerado. La contratan para el transporte de 3 000 m3 de producto que necesita refrigeración y 4 000 m3 de otro que no la necesita. El coste por kilómetro de un camión del tipo A es de 30 € y el B de 40 €. ¿Cuántos camiones de cada tipo ha de utilizar para que el coste total sea mínimo?

...

Descargar como (para miembros actualizados) txt (11 Kb) pdf (371 Kb) docx (179 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com