EJERCICIOS RESUELTO ESTATICA
Enviado por lauraviedma • 18 de Agosto de 2011 • 11.422 Palabras (46 Páginas) • 1.631 Visitas
Simple Stresses
Simple stresses are expressed as the ratio of the applied force divided by the resisting area or
σ = Force / Area.
It is the expression of force per unit area to structural members that are subjected to external forces and/or induced forces. Stress is the lead to accurately describe and predict the elastic deformation of a body.
Simple stress can be classified as normal stress, shear stress, and bearing stress. Normal stress develops when a force is applied perpendicular to the cross-sectional area of the material. If the force is going to pull the material, the stress is said to be tensile stress and compressive stress develops when the material is being compressed by two opposing forces. Shear stress is developed if the applied force is parallel to the resisting area. Example is the bolt that holds the tension rod in its anchor. Another condition of shearing is when we twist a bar along its longitudinal axis. This type of shearing is called torsion and covered in Chapter 3. Another type of simple stress is the bearing stress, it is the contact pressure between two bodies.
Suspension bridges are good example of structures that carry these stresses. The weight of the vehicle is carried by the bridge deck and passes the force to the stringers (vertical cables), which in turn, supported by the main suspension cables. The suspension cables then transferred the force into bridge towers.
Normal Stress
Stress
Stress is the expression of force applied to a unit area of surface. It is measured in psi (English unit) or in MPa (SI unit). Another unit of stress which is not commonly used is the dynes (cgs unit). Stress is the ratio of force over area.
stress = force / area
Simple Stresses
There are three types of simple stress namely; normal stress, shearing stress, and bearing stress.
Normal Stress
The resisting area is perpendicular to the applied force, thus normal. There are two types of normal stresses; tensile stress and compressive stress. Tensile stress applied to bar tends the bar to elongate while compressive stress tend to shorten the bar.
where P is the applied normal load in Newton and A is the area in mm2. The maximum stress in tension or compression occurs over a section normal to the load.
SOLVED PROBLEMS IN NORMAL STRESS
Problem 104
A hollow steel tube with an inside diameter of 100
mm must carry a tensile load of 400 kN. Determine
the outside diameter of the tube if the stress is limited
to 120 MN/m2.
Solution 104
Problem 105
A homogeneous 800 kg bar AB is supported at either
end by a cable as shown in Fig. P-105. Calculate the
smallest area of each cable if the stress is not to exceed
90 MPa in bronze and 120 MPa in steel.
Figure P-105
Solution 105
Problem 106
The homogeneous bar shown in Fig. P-106 is
supported by a smooth pin at C and a cable that runs
from A to B around the smooth peg at D. Find the
stress in the cable if its diameter is 0.6 inch and the
bar weighs 6000 lb.
Solution 106
Problem 107
A rod is composed of an aluminum section rigidly
attached between steel and bronze sections, as shown
in Fig. P-107. Axial loads are applied at the positions
indicated. If P = 3000 lb and the cross sectional area
of the rod is 0.5 in2, determine the stress in each
section.
Solution 107
Problem 108
An aluminum rod is rigidly attached between a steel rod and a bronze rod as shown in Fig. P-108. Axial loads are applied at the positions indicated. Find the maximum value of P that will not exceed a stress in steel of 140 MPa, in aluminum of 90 MPa, or in bronze of 100 MPa.
Figure P-108
Solution 108
Problem 109
Determine the largest weight W that can be supported by two wires shown in Fig. P-109. The stress in either wire is not to exceed 30 ksi. The cross-sectional areas of wires AB and AC are 0.4 in2 and 0.5 in2, respectively.
Solution 109
Problem 110
A 12-inches square steel bearing plate lies between an 8-inches diameter
wooden post and a concrete footing as shown in Fig. P-110. Determine
the maximum value of the load P if the stress in wood is limited to 1800
psi and that in concrete to 650 psi.
Solution 110
Problem 111
For the truss shown in Fig. P-111, calculate the stresses in members CE, DE, and DF. The crosssectional area of each member is 1.8 in2. Indicate tension (T) or compression (C).
Solution 111
Problem 112
Determine the crosssectional areas of members AG, BC, and CE for the truss shown in Fig. P-112 above. The stresses are not to exceed 20 ksi in tension and 14 ksi in compression. A reduced stress in compression is specified to reduce the danger of buckling.
Solution 112
Problem 113
Find the stresses in members BC, BD, and CF for the truss shown in Fig. P-113. Indicate the tension or compression. The cross sectional area of each member is 1600 mm2.
Solution 113
Problem 114
The homogeneous bar ABCD shown in Fig. P-114 is supported by a cable that runs from A to B around the smooth peg at E, a vertical cable at C, and a smooth inclined surface at D. Determine the mass of the heaviest bar that can be supported if the stress in each cable is limited to 100 MPa. The area of the cable AB is 250 mm2 and that of the cable at C is 300 mm2.
Solution 114
Shearing Stress
Forces parallel to the area resisting the force cause shearing stress. It differs to tensile and compressive stresses, which are caused by forces perpendicular to the area on which they act. Shearing stress is also known as tangential stress.
where V is the resultant shearing force which passes which passes through the centroid of the area A being sheared.
SOLVED PROBLEMS IN SHEARING STRESS
Problem 115
What force is required to punch a 20-mm-diameter hole in a plate that is 25 mm thick? The shear strength is 350 MN/m2.
Solution 115
Problem 116
As in Fig. 1-11c, a hole is to be punched
...