ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Electrica


Enviado por   •  18 de Diciembre de 2012  •  6.287 Palabras (26 Páginas)  •  430 Visitas

Página 1 de 26

Ingeniería Eléctrica

Química

Enlace Metálico

Los metales se caracterizan por poseer un número pequeño de electrones en la capa exterior de los átomos, según la teoría del enlace metálico, estos electrones forman un gas electrónico, que ocupa bandas limitadas en el seno del metal, las llamadas zonas de Brillain, y pueden pasar fácilmente de unas a otras, lo que justifica la relativa libertad de que disponen dentro de la red. Así los metales estarían constituidos por cationes, átomos que han perdido electrones, con posiciones fijas y nubes de electrones pertenecientes al conjunto.

ENLACE METALICO O DE BANDA

Consiste en un conjunto de cargas positivas que son los átomos metálicos desprovistos de sus electrones de valencia, los cuales pertenecen y unen a todos los cationes. Los metales en estado sólido forman un retículo cristalino tridimensional, en cuyos nudos hay los cationes metálicos, y entre ellos se mueven libremente los electrones de valencia. Puede decirse que los orbitales atómicos de valencia se superponen en gran número dando lugar a bandas de energía continuas en las que los electrones se desplazan libremente. Los electrones están totalmente des localizados, lo que significa que el enlace es completamente a direccional. En las sustancias metálicas, como en las iónicas, no existen moléculas, es el cristal en su conjunto el que se considera como una molécula, ya que los enlaces se extienden en las tres direcciones del espacio. Los sólidos metálicos son excelentes conductores eléctricos y térmicos, debido a la existencia de electrones libres, poseen brillo metálico y son tenaces, dúctiles y opacos.

Generalmente se considera que el enlace metálico consiste de un grupo de iones positivos y una gran cantidad de electrones, los cuales pueden moverse libremente entre los iones. Este comportamiento influye sobre las propiedades generales de los metales como en el caso de su habilidad para conducir la corriente eléctrica.

Por ejemplo:

En un trozo de sodio metálico, los iones están localizados en una posición fija en el metal y los electrones de valencia (uno por cada átomo de sodio) están libres para moverse entre las varias nubes electrónicas.

Por tanto, en los metales las fuerzas de atracción que deben superarse para realizar la conversión del estado sólido al estado líquido o desde el estado líquido al estado gaseoso son bastante fuertes. Por supuesto, estas fuerzas de atracción varían de un metal a otro pero en general son muy fuertes.

¿QUE ATOMOS DE ELEMENTO PUEDEN INTERVENIR?

Hoy se acepta que en los metales el enlace no es entre átomos, sino más bien entre cationes metálicos y lo que fueron sus electrones. Así, el metal sodio es un conjunto ordenado de iones Na+ y un “mar de electrones” distribuidos entre ellos.

Aquí el compartimiento de electrones ocurre entre todos los núcleos metálicos, que poseen valores iguales de electronegatividad. Esta visión del enlace metálico esta simplificada, pero es lo bastante funcional para nuestro propósito, que es explicar algunas de las propiedades de estos elementos.

El hecho de que los electrones estén deslocalizados explica por qué de estos elementos son buenos conductores tanto del calor como de la electricidad, ya que ambos fenómenos están asociados al libre movimiento de sus electrones. Los metales son conductores, mientras que los sólidos iónicos o covalentes, donde los pares de electrones están bien localizados, no lo son.

Cuando un pedazo de metal se somete a presión externa, los cationes metálicos pueden resbalar unos sobre otros, debido a la capa de electrones que los separa. El metal de deforma pero no se rompe, a diferencia de los cristales iónicos.

Características del Enlace Metálico:

Maleabilidad y Ductilidad

Cuando un pedazo del metal se somete a presión externa, los cationes metálicos pueden “resbalar” unos sobre otros, debido a la capa de electrones que los separa. El metal se deforma pero no se rompe, a diferencia de los cristales iónicos. Esta es la explicación de su maleabilidad y de la ductilidad.

Los núcleos de los metales se organizan en estructuras ordenadas. Imagina que colocamos sobre una superficie lisa 14 bolas de billar.

Si posteriormente se agregan mas bolas en un segunda capa, se colocarían en los huecos que forman cada tres bolas de la primera capa. Para añadir bolas en una tercera capa hay ahora dos opciones; o escogemos los huecos de la segunda capa que están directamente sobre las bolas de la primera, o usamos aquellos que se encuentran sobre huecos de la primera capa. Si se escoge la primera opción se obtiene una estructura llamada hexagonal de empaquetamiento compacto, mientras que la segunda da lugar a la estructura cúbica centrada en las caras.

Aleaciones

Muchos de los metales que conocemos no son puros, sino aleaciones. Una aleación es una disolución sólida, y se prepara disolviendo un metal en otro, generalmente cuando ambos están en estado líquido. La aleación tiene propiedades fisicoquímicas diferentes de las de metales originales.

Por ejemplo:

El oro puro (denominado de 24 quilates) es demasiado blando para usarlo en joyería. Para hacerlo más fuerte se alea con plata y cobre, lo que en una proporción de 25% da lugar a una aleación conocida como oro de 18 quilates.

Las aleaciones del mercurio se llaman amalgamas. Las de plata y zinc son muy utilizadas por los dentistas para llenar las cavidades dentales. El mercurio, que solo es muy venenoso, cuando se encuentra en esta amalgama no representa mayor problema de salud.

Cuando los átomos de los metales forman una aleación son prácticamente del mismo tamaño (hasta un 15% en su diferencia) pueden remplazarse fácilmente sin romper ni alterar la estructura cristalina del metal que se encuentra en mayor proporción. Tenemos entonces una aleación por sustitución, como es el caso del oro con la plata. Si la diferencia de tamaños es mayor, los átomos más pequeños ocupan los huecos dejados por los átomos mayores -las posiciones intersticiales- por lo que se les conoce como aleaciones intersticiales.

ENLACES POR FUERZAS DE VAN-DER-WAALS.

De todas las fuerzas que desempeñan un papel a nivel molecular, las llamadas

...

Descargar como (para miembros actualizados) txt (41 Kb)
Leer 25 páginas más »
Disponible sólo en Clubensayos.com