ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Enlaces Covalentes


Enviado por   •  21 de Septiembre de 2014  •  2.112 Palabras (9 Páginas)  •  535 Visitas

Página 1 de 9

2.9 comparación entre las propiedades

de los compuestos iónicos y covalentes

Propiedades compuestos iónicos:

• Temperaturas de fusión y ebullición muy elevadas. Sólidos a temperatura ambiente. La red cristalina es muy estable por lo que resulta muy difícil romperla.

• Son duros (resistentes al rayado).

• No conducen la electricidad en estado sólido, los iones en la red cristalina están en posiciones fijas, no quedan partículas libres que puedan conducir la corriente eléctrica.

• Son solubles en agua por lo general, los iones quedan libres al disolverse y puede conducir la electricidad en dicha situación.

• Al fundirse también se liberan de sus posiciones fijas los iones, pudiendo conducir la electricidad.

Propiedades compuestos covalentes:

Son las habituales de los enlaces covalentes:

• Temperaturas de fusión bajas. A temperatura ambiente se encuentran en estado gaseoso, líquido (volátil) o sólido de bajo punto de fusión.

• La temperaturas de ebullición son igualmente bajas.

• No conducen la electricidad en ningún estado físico dado que los electrones del enlace están fuertemente localizados y atraídos por los dos núcleos de los átomos que los comparten.

• Son muy malos conductores del calor.

• La mayoría son poco solubles en agua. Cuando se disuelven en agua no se forman iones dado que el enlace covalente no los forma, por tanto, si se disuelven tampoco conducen la electricidad.

2.10 Fuerza del enlace covalente

• La estabilidad de una molécula tiene que ver con la fuerza de los enlaces covalentes que contiene.

• La fuerza de un enlace covalente está determinada por la energía necesaria para romper esa unión.

Fuerza de los enlaces covalentes

• Entalpía de enlace = es el cambio en entalpía para la ruptura de un enlace dado un mol de sustancia gaseosa. A mayor entalpía de enlace mas fuerte será el enlace.

• Longitud de enlace = la distancia entre los núcleos de los átomos que participan en un enlace. Al aumentar el número de enlaces entre los átomos mas corto es el enlace y mas fuerte.

2.11 Enlace metálico y elementos semiconductores

Un enlace metálico es un enlace químico que mantiene unidos los átomos (unión entre nucleos atomicos y los electrones de valencia que se agrupan alrededor de estos como una nube) de los metales entre sí. Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas. Se trata de redes tridimensionales que adquieren la estructura típica de empaquetamiento compacto de esferas. En este tipo de estructura cada átomo metálico está rodeado por otros doce átomos (seis en el mismo plano, tres por encima y tres por debajo). Además, debido a la baja electronegatividad que poseen los metales, los electrones de valencia son extraídos de sus orbitales y tienen la capacidad de moverse libremente a través del compuesto metálico, lo que otorga a éste las propiedades eléctricas y térmicas. Este enlace sólo puede presentarse en sustancias en estado sólido.

2.12 La teoría de bandas

La teoría de bandas constituye una explicación alternativa del comportamiento de los materiales semiconductores. Se basa en el hecho de que los electrones de un átomo aislado se distribuyen según ciertos niveles energéticos, denominados órbitasu orbitales, en torno al núcleo. Cuando los átomos se unen unos con otros para formar un sólido, se agrupan de manera ordenada formando una red cristalina. En este caso, debido a la proximidad de los átomos entre sí, las órbitas en las que se encuentran los electrones de cada átomo se ven afectadas por la presencia de los átomos vecinos. De hecho, dichas órbitas se solapan entre sí, dando lugar a la aparición de unas zonas o bandas continuas en las que se pueden encontrar los electrones, y que reciben el nombre de bandas de energía.

Para entender el comportamiento de los materiales en relación con su capacidad de conducir, nos interesan las dos últimas bandas, que son:

• La banda de valencia: está ocupada por los electrones de valencia de los átomos, es decir, aquellos electrones que se encuentran en la última capa o nivel energético de los átomos. Los electrones de valencia son los que forman los enlaces entre los átomos, pero no intervienen en la conducción eléctrica.

• La banda de conducción: está ocupada por los electrones libres, es decir, aquellos que se han desligado de sus átomos y pueden moverse fácilmente. Estos electrones son los responsables de conducir la corriente eléctrica.

En consecuencia, para que un material sea buen conductor de la corriente eléctrica debe tener electrones en la banda de conducción. Cuando la banda esté vacía, el material se comportará como un aislante.

Entre la banda de valencia y la de conducción existe una zona denominada banda prohibida o gap, que separa ambas bandas y en la cual no pueden encontrarse los electrones.

La conducción de la corriente eléctrica según la teoría de bandas

2.13 Estructura de los materiales

Sólido cristalino se puede decir que un sólido cristalino podría ser el hielo; ya que este posee un ordenamiento estricto y regular, es decir, que sus átomos, moléculas o iones ocupan posiciones especificas, estos sólidos suelen tener superficies planas o caras que forman ángulos definidos entre si. Los sólidos cristalinos adoptan diferentes formas y colores.

Sólido amorfo Amorfo quiere decir que estos sólidos no tienen forma.

Este sólido carece de un ordenamiento bien definido y de un orden molecular definido, algunos de estos sólidos son mezclas de moléculas que no se apilan, es decir que no pueden ir unos arriba de otros. Algún ejemplo de este tipo de sólidos son el hule y el vidrio.

Celda unitaria Es la unidad estructural que se repite en un sólido, cada sólido cristalino se representa con cada uno de los siete tipos de celdas unitarias que existen y cualquiera que se repita en el espacio tridimensional forman una estructura divida en pequeños cuadros.

A un modelo simétrico, que es tridimensional de varios puntos que define un cristal se conoce como una red cristalina.

Empaquetamiento de esferas

Los requerimientos geométricos generales para que se forme un cristal se entienden si se analizan las distintas formas en que se pueden empacar varias esferas idénticas.

...

Descargar como (para miembros actualizados) txt (14 Kb)
Leer 8 páginas más »
Disponible sólo en Clubensayos.com