Estadistica Inferencial
Enviado por isislunab • 29 de Mayo de 2014 • 1.612 Palabras (7 Páginas) • 219 Visitas
Regresión lineal simple
Regresión lineal
Para otros usos de este término, véase Función lineal (desambiguación).
Ejemplo de una regresión lineal con una variable dependiente y una variable independiente.
En estadística la regresión lineal o ajuste lineal es un método matemático que modela la relación entre una variable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como:
: variable dependiente, explicada o regresando.
: variables explicativas, independientes o regresores.
: parámetros, miden la influencia que las variables explicativas tienen sobre el regresando.
donde es la intersección o término "constante", las son los parámetros respectivos a cada variable independiente, y es el número de parámetros independientes a tener en cuenta en la regresión. La regresión lineal puede ser contrastada con la regresión no lineal.
Historia
La primera forma de regresión lineal documentada fue el método de los mínimos cuadrados que fue publicada por Legendre en 1805,1 y en dónde se incluía una versión del teorema de Gauss-Márkov.
Etimología
El término regresión se utilizó por primera vez en el estudio de variables antropométricas: al comparar la estatura de padres e hijos, donde resultó que los hijos cuyos padres tenían una estatura muy superior al valor medio, tendían a igualarse a éste, mientras que aquellos cuyos padres eran muy bajos tendían a reducir su diferencia respecto a la estatura media; es decir, "regresaban" al promedio.2 La constatación empírica de esta propiedad se vio reforzada más tarde con la justificación teórica de ese fenómeno.
El término lineal se emplea para distinguirlo del resto de técnicas de regresión, que emplean modelos basados en cualquier clase de función matemática. Los modelos lineales son una explicación simplificada de la realidad, mucho más ágiles y con un soporte teórico mucho más extenso por parte de la matemática y la estadística.
Pero bien, como se ha dicho, podemos usar el término lineal para distinguir modelos basados en cualquier clase de aplicación.
El modelo de regresión lineal
El modelo lineal relaciona la variable dependiente Y con K variables explicitas (k = 1,...K), o cualquier transformación de éstas que generen un hiperplano de parámetros desconocidos:
(2)
donde es la perturbación aleatoria que recoge todos aquellos factores de la realidad no controlables u observables y que por tanto se asocian con el azar, y es la que confiere al modelo su carácter estocástico. En el caso más sencillo, con una sola variable explcita, el hiperplano es una recta:
(3)
El problema de la regresión consiste en elegir unos valores determinados para los parámetros desconocidos , de modo que la ecuación quede completamente especificada. Para ello se necesita un conjunto de observaciones. En una observación i-ésima (i= 1,... I) cualquiera, se registra el comportamiento simultáneo de la variable dependiente y las variables explicitas (las perturbaciones aleatorias se suponen no observables).
(4)
Los valores escogidos como estimadores de los parámetros , son los coeficientes de regresión sin que se pueda garantizar que coincida n con parámetros reales del proceso generador. Por tanto, en
(5)
Los valores son por su parte estimaciones o errores de la perturbación aleatoria.
Hipótesis modelo de regresión lineal clásico
1. Esperanza matemática nula.
Para cada valor de X la perturbación tomará distintos valores de forma aleatoria, pero no tomará sistemáticamente valores positivos o negativos, sino que se supone tomará algunos valores mayores que cero y otros menores que cero, de tal forma que su valor esperado sea cero.
2. Homocedasticidad
para todo t
Todos los términos de la perturbación tienen la misma varianza que es desconocida. La dispersión de cada en torno a su valor esperado es siempre la misma.
3. Incorrelación.
para todo t,s con t distinto de s
Las covarianzas entre las distintas pertubaciones son nulas, lo que quiere decir que no están correlacionadas o autocorrelacionadas. Esto implica que el valor de la perturbación para cualquier observación muestral no viene influenciado por los valores de las perturbaciones correspondientes a otras observaciones muestrales.
4. Regresores no estocásticos.
5. No existen relaciones lineales exactas entre los regresores.
6. Suponemos que no existen errores de especificación en el modelo, ni errores de medida en las variables explicativas
7. Normalidad de las perturbaciones
Supuestos del modelo de regresión lineal
Para poder crear un modelo de regresión lineal es necesario que se cumpla con los siguientes supuestos:3
1. Que la relación entre las variables sea lineal.
2. Que los errores en la medición de las variables explicativas sean independientes entre sí.
3. Que los errores tengan varianza constante. (Homocedasticidad)
4. Que los errores tengan una esperanza matemática igual a cero (los errores de una misma magnitud y distinto signo son equiprobables).
5. Que el error total sea la suma de todos los errores.
Tipos de modelos de regresión lineal
Existen diferentes tipos de regresión lineal que se clasifican de acuerdo a sus parámetros:
Regresión lineal simple
Sólo se maneja una variable independiente, por lo que sólo cuenta con dos parámetros. Son de la forma:4
(6)
donde es el error asociado a la medición del valor y siguen los supuestos de modo que (media cero, varianza constante
...