Estimacion Puntual Y Por Intervalos
Enviado por andres2610 • 16 de Septiembre de 2013 • 1.111 Palabras (5 Páginas) • 935 Visitas
Estimación puntual
Consiste en la estimación del valor del parámetro mediante un sólo valor, obtenido de una fórmula determinada. Por ejemplo, si se pretende estimar la talla media de un determinado grupo de individuos, puede extraerse una muestra y ofrecer como estimación puntual la talla media de los individuos. Lo más importante de un estimador, es que sea un estimador eficiente. Es decir, que sea insesgado(ausencia de sesgos) y estable en el muestreo o eficiente (varianza mínima)
Estimación puntual Sea X una variable poblacional con distribución Fθ , siendo θ desconocido. El problema de estimación puntual consiste en, seleccionada una muestra X1, ..., Xn, encontrar el estadístico T(X1, ..., Xn) que mejor estime el parámetro θ. Una vez observada o realizada la muestra, con valores x1, ..., xn, se obtiene la estimación puntual de θ, T(x1, ..., xn) = ˆ θ . Vemos a continuación dos métodos para obtener la estimación puntual de un parámetro: método de los momentos y método de máxima verosimilitud. Método de los momentos: consiste en igualar momentos poblacionales a momentos muestrales. Deberemos tener tantas igualdades como parámetros a estimar. Momento poblacional de orden r αr = E(Xr ) Momento muestral de orden r ar = Xn i=1 Xr i n Método de máxima verosimilitud: consiste en tomar como valor del parámetro aquel que maximice la probabilidad de que ocurra la muestra observada. Si X1, ..., Xn es una muestra seleccionada de una población con distribución Fθ o densidad fθ(x), la probabilidad de que ocurra una realización x1, ..., xn viene dada por: Lθ(x1, ..., xn) = Yn i=1 fθ(xi ) A Lθ(x1, ..., xn) se le llama función de verosimilitud.(credibilidad de la muestra observada). Buscamos entonces el valor de θ que maximice la función de verosimilud, y al valor obtenido se le llama estimación por máxima verosimilitud de θ. Nota: si la variable X es discreta, en lugar de fθ(xi ) consideramos la función masa de probabilidad pθ(xi ). Ejemplo 7.1: Sea X → N(µ, σ), con µ desconocido. Seleccionada una m.a.s. X1, ..., Xn, con realización x1, ..., xn, estimamos el parámetro µ por ambos métodos. Según el método de los momentos: E(X) = Xn i=1 Xi n = − X, y al ser µ = E(X) se obtiene que ˆ µ = − x. Por el método de máxima verosimilitud: Lµ(x1, ..., xn) = Yn i=1 fµ(xi ) = = Yn i=1 1 √ 2πσ e −(xi−µ) 2 2σ
Estimación por Intervalos de confianza 109 y maximizamos en µ tal función; en este caso resulta más fácil maximizar su logaritmo: lnLµ(x1, ..., xn) = − 1 2σ 2 Xn i=1 (xi − µ) 2 − n ln( √ 2πσ) ∂ ∂µ lnLµ(x1, ..., xn) = 1 σ 2 Xn i=1 (xi − µ) = n − x − nµ σ 2 = 0 ⇐⇒ ˆ µ = −
Estimación por intervalos
Consiste en la obtención de un intervalo dentro del cual estará el valor del parámetro estimado con una cierta probabilidad. En la estimación por intervalos se usan los siguientes conceptos:
Intervalo de confianza
El intervalo de confianza es una expresión del tipo [θ1, θ2] ó θ1 ≤ θ ≤ θ2, donde θ es el parámetro a estimar. Este intervalo contiene al parámetro estimado con una determinada certeza o nivel de confianza. Pero a veces puede cambiar este intervalo cuando la muestra no garantiza un axioma o un equivalente circunstancial.
Variabilidad del Parámetro
Si no se conoce, puede obtenerse una aproximación
...