ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Fundamentos numericos.


Enviado por   •  1 de Julio de 2016  •  Apuntes  •  933 Palabras (4 Páginas)  •  240 Visitas

Página 1 de 4

FUNDAMENTOS NUMERICOS

 

Sistemas de numeración

Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan porque un símbolo tiene distinto valor según la posición que ocupa en la cifra.

  1.  SISTEMA DE NUMERACIÓN DECIMAL:

El sistema de numeración que utilizamos habitualmente es eldecimal, que se compone de diez símbolos o dígitos (0, 1, 2, 3, 4, 5, 6, 7, 8 y 9) a los que otorga un valor dependiendo de la posición que ocupen en la cifra: unidades, decenas, centenas, millares, etc.

El valor de cada dígito está asociado al de una potencia de base 10, número que coincide con la cantidad de símbolos o dígitos del sistema decimal, y un exponente igual a la posición que ocupa el dígito menos uno, contando desde la derecha.

En el sistema decimal el número 528, por ejemplo, significa:

5 centenas + 2 decenas + 8 unidades, es decir:

 

5*102 + 2*101 + 8*100 o, lo que es lo mismo:

 

500 + 20 + 8 = 528

 

 

En el caso de números con decimales, la situación es análoga aunque, en este caso, algunos exponentes de las potencias serán negativos, concretamente el de los dígitos colocados a la derecha del separador decimal. Por ejemplo, el número 8245,97 se calcularía como:

8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos

 

8*103 + 2*102 + 4*101 + 5*100 + 9*10-1 + 7*10-2, es decir:

 

8000 + 200 + 40 + 5 + 0,9 + 0,07 = 8245,97

 sistema de numeracion binario.

El sistema de numeración binario utiliza sólo dos dígitos, el cero(0) y el uno (1).

En una cifra binaria, cada dígito tiene distinto valor dependiendo de la posición que ocupe. El valor de cada posición es el de una potencia de base 2, elevada a un exponente igual a la posición del dígito menos uno. Se puede observar que, tal y como ocurría con el sistema decimal, la base de la potencia coincide con la cantidad de dígitos utilizados (2) para representar los números.

De acuerdo con estas reglas, el número binario 1011 tiene un valor que se calcula así:

1*23 + 0*22 + 1*21 + 1*20 , es decir:

 

8 + 0 + 2 + 1 = 11

y para expresar que ambas cifras describen la misma cantidad lo escribimos así:

10112 = 1110

 

 

  1.  CONVERSIÓN ENTRE NÚMEROS DECIMALES Y BINARIOS

Convertir un número decimal al sistema binario es muy sencillo: basta con realizar divisiones sucesivas por 2 y escribir los restos obtenidos en cada división en orden inverso al que han sido obtenidos.

Por ejemplo, para convertir al sistema binario el número7710haremos una serie de divisiones que arrojarán los restos siguientes:

77 : 2 = 38 Resto: 1

38 : 2 = 19 Resto: 0

19 : 2 = 9 Resto: 1

9 : 2 = 4 Resto: 1

4 : 2 = 2 Resto: 0

2 : 2 = 1 Resto: 0

1 : 2 = 0 Resto: 1

y, tomando los restos en orden inverso obtenemos la cifra binaria:

7710 = 10011012

 

  1.  CONVERSIÓN DE BINARIO A DECIMAL

 

El proceso para convertir un número del sistema binario al decimal es aún más sencillo; basta con desarrollar el número, teniendo en cuenta el valor de cada dígito en su posición, que es el de una potencia de 2, cuyo exponente es 0 en el bit situado más a la derecha, y se incrementa en una unidad según vamos avanzando posiciones hacia la izquierda.

...

Descargar como (para miembros actualizados) txt (5 Kb) pdf (137 Kb) docx (12 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com