Historia De La Propabilidad
Enviado por imthewifehoran • 27 de Junio de 2013 • 581 Palabras (3 Páginas) • 236 Visitas
HISTORIA DE LA PROBABILIDAD
Las probabilidades constituyen una rama de las matemáticas que se ocupa de medir o determinar cuantitativamente la posibilidad de que un suceso o experimento produzca un determinado resultado.
El diccionario de la Real Academia Española define «azar» como una casualidad, un caso fortuito, y afirma que la expresión «al azar» significa «sin orden».1 La idea de Probabilidad está íntimamente ligada a la idea de azar y nos ayuda a comprender nuestras posibilidades de ganar un juego de azar o analizar las encuestas. Pierre-Simon Laplace afirmó: "Es notable que una ciencia que comenzó con consideraciones sobre juegos de azar haya llegado a ser el objeto más importante del conocimiento humano". Comprender y estudiar el azar es indispensable, porque la probabilidad es un soporte necesario para tomar decisiones en cualquier ámbito.
Antes de la mitad del siglo XVII, término 'probable' (en latín probable) significaba aprobable, y se aplicaba en ese sentido, unívocamente, a la opinión y a la acción. Una acción u opinión probable era una que las personas sensatas emprenderían o mantendrían, en las circunstancias
Aparte de algunas consideraciones elementales hechas por Girolamo Cardano en el siglo XVI, la doctrina de las probabilidades data de la correspondencia de Pierre de Fermat y Blaise Pascal (1654). Christiaan Huygens (1657) le dio el tratamiento científico conocido más temprano al concepto. Ars Conjectandi (póstumo, 1713) de Jakob Bernoulli y Doctrine of Chances (1718) de Abraham de Moivre trataron el tema como una rama de las matemáticas. Véase El surgimiento de la probabilidad (The Emergence of Probability) de Ian Hackingpara una historia de los inicios del desarrollo del propio concepto de probabilidad matemática
Pierre-Simon Laplace (1774) hizo el primer intento para deducir una regla para la combinación de observaciones a partir de los principios de la teoría de las probabilidades. Representó la ley de la probabilidad de error con una curva , siendo cualquier error e y su probabilidad, y expuso tres propiedades de esta curva:
1. es simétrica al eje ;
2. el eje es una asíntota, siendo la probabilidad del error igual a 0;
3. la superficie cerrada es 1, haciendo cierta la existencia de un error.
Dedujo una fórmula para la media de tres observaciones. También obtuvo (1781) una fórmula para la ley de facilidad de error (un término debido a Lagrange, 1774), pero una que llevaba a ecuaciones inmanejables. Daniel Bernoulli (1778) introdujo el principio del máximo producto de las probabilidades de un sistema de errores concurrentes.
El método de mínimos cuadrados se debe a Adrien-Marie Legendre (1805), que lo introdujo en su Nouvelles méthodes pour la détermination des orbites des comètes (Nuevos métodos para la determinación de las órbitas de los cometas). Ignorando
...