Interes Simple
Enviado por danielaale173 • 4 de Junio de 2014 • 530 Palabras (3 Páginas) • 239 Visitas
1. Interés Simple
El interés simple, es pagado sobre el capital primitivo que permanece invariable. En consecuencia, el interés obtenido en cada intervalo unitario de tiempo es el mismo. Es decir, la retribución económica causada y pagada no es reinvertida, por cuanto, el monto del interés es calculado sobre la misma base.
Interés simple, es también la ganancia sólo del Capital (principal, stock inicial de efectivo) a la tasa de interés por unidad de tiempo, durante todo el período de transacción comercial.
La fórmula de la capitalización simple permite calcular el equivalente de un capital en un momento posterior. Generalmente, el interés simple es utilizado en el corto plazo (períodos menores de 1 año). Ver en éste Capítulo, numeral 2.3.
Al calcularse el interés simple sobre el importe inicial es indiferente la frecuencia en la que éstos son cobrados o pagados. El interés simple, NO capitaliza.
Fórmula general del interés simple:
1.1. Valor actual
La longitud de una escalera es la misma contada de arriba abajo como de abajo arriba. El valor futuro VF puede considerarse como la cima vista desde abajo y el valor actual VA como el fondo visto desde arriba.
El valor actual de una cantidad con vencimiento en el futuro, es el capital que a un tipo de interés dado, en períodos también dados, ascenderá a la suma debida.
Si conocemos el monto para tiempo y tasa dados, el problema será entonces hallar el capital, en realidad no es otra cosa que el valor actual del monto. Derivamos el VA de la fórmula general:
Siendo ésta la fórmula para el valor actual a interés simple, sirve no sólo para períodos de año, sino para cualquier fracción del año.
El descuento es la inversa de la capitalización. Con ésta fórmula calculamos el capital equivalente en un momento anterior de importe futuro.
Otras fórmulas derivadas de la fórmula general:
Si llamamos I a los intereses percibidos en el período considerado, convendremos:
La diferencia entre VF y VA es el interés (I) generado por VA.
Y también, dada la fórmula general, obtenemos la fórmula del importe de los intereses:
I = VA(1+n*i) - VA = VA + VA*n* i - VA
I = (principal)*(tasa de interés)*(número de períodos)
(Inversiones) I = monto total hoy - inversión original
(Préstamos) I = saldo de deuda - préstamo inicial
Con la fórmula [8] igual calculamos el interés (I) de una inversión o préstamo.
Sí sumamos el interés I al principal VA, el monto VF o valor futuro será.
o VF = VA(1+i*n)
Despejando éstas fórmulas obtenemos
...