La Maquinas
Enviado por gaby_1789 • 24 de Octubre de 2012 • Examen • 351 Palabras (2 Páginas) • 1.646 Visitas
1.- Prob. 3-1. Un generador de c.c. derivación de 50 kW y 250 V tiene una resistencia de circuito de excitación de 62,5 Ω, una caída de tensión en las escobillas de 3 V y una resistencia de inducido de 0,025 Ω. Calcular, cuando se suministra la corriente nominal a la velocidad y tensión nominales:
a) Las corrientes de carga, de excitación y de inducido
b) La tensión generada en el inducido
a) P=VxI
I=50kW/250V
I=200A
I_f=V_f/R_f =250/62,5=4A
I_a=I_f+I_l
I_a=200+4=204[A]
b)
E_g=V_a+I_a R_a+3V
E_g=250+5+3=258[V]
2.- Prob. 3-2. Un generador serie de c.c. de 10 kW y 125 V tiene una caída en las escobillas de 2V, una resistencia del circuito de inducido de 0,1 Ω y una resistencia de excitación serie de 0,05 Ω. Cuando suministra la corriente nominal a la velocidad nominal, calcular:
a) La corriente en el inducido
b) La tensión generada en el inducido
P = 10 kW
〖 V〗_l=125V=V_a=V_f
a)
V=2[V]
R_a=0.1Ω
R_s=0.05Ω
I=10K/125=80[A]
b)
I_f=125/0,05=2500[A]
E_g=V_a+I_a R_a+I_a R_s+V_e
E_g=125+8+4+2=139[V]
3.- Prob. 3-3. Un generador compound con derivación larga de 100 kW y 600 V presenta una caída de tensión en las escobillas de 5 V, una resistencia de la excitación serie de 0,02 Ω, una resistencia de la excitación derivación de 200 Ω y una resistencia de inducido de 0,04 Ω. Cuando suministra la corriente nominal a la velocidad nominal de 1200 rpm, calcular:
a) La corriente en el inducido
b) La tensión generada en el inducido
I_f=V_f/R_f =600/200=3[A]
I_l=P/V=(100x〖10〗^3)/600=166,67[A]
E_g=V_a+I_a R_a+I_s R_s+B_d
E_g=600+(166,67x0,04)+(166,67x0,02)+5
E_g=615[V]
4.- Prob. 3-4. Un generador con excitación independiente presenta una tensión en vacío de 125 V con una corriente de excitación de 2,1 A cuando se acciona a la velocidad de 1600 rpm. Suponiendo que está funcionando sobre la parte recta de su curva de saturación, calcular: a) La tensión generada cuando la corriente de excitación aumenta hasta 2,6 A.
b) La tensión generada cuando la velocidad se reduce a 1450 rpm y la corriente de
excitación aumenta hasta 2,8 A.
a)
125=RxI
125=Rx2.1
R=59,52Ω
b)
V=59,52x2,6
V=154,8[V]
E_g1=166,67[V]
E_g2=(E_g1 x1450)/1600
E_g2=166,67x1450/1600=151[V]
5.- Prob. 3-5. Suponiendo que un aumento del 100% en la corriente de excitación origina un aumento de flujo del 70%, repetir el problema
...