ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La parábola


Enviado por   •  28 de Mayo de 2012  •  Ensayo  •  1.071 Palabras (5 Páginas)  •  601 Visitas

Página 1 de 5

En matemática, la parábola (del griego παραβολή) es la sección cónica resultante de cortar un cono recto con un plano paralelo a sugeneratriz. Se define también como el lugar geométrico de los puntos de un plano que equidistan de una recta (eje o directriz) y un punto fijo llamado foco. En geometría proyectiva, la parábola se define como la curva envolvente de las rectas que unen pares de puntos homólogos en una proyectividad semejante o semejanza.

La parábola aparece en muchas ramas de las ciencias aplicadas, debido a que las gráficas de ecuaciones cuadráticas son parábolas. Por ejemplo, la trayectoria ideal del movimiento de los cuerpos bajo la influencia de la gravedad.

Aunque la definición original de la parábola es la relativa a la sección de un cono recto por un plano paralelo a su directriz, actualmente es más común definir la parábola como un lugar geométrico:

Una parábola es el lugar geométrico de los puntos de un plano equidistantes a una recta dada, llamada directriz, y a un punto fijo que se denomina foco.

De esta forma, una vez fija una recta y un punto se puede construir una parábola que los tenga por foco y directriz de acuerdo a la siguiente construcción. Sea T un punto cualquiera de la recta directriz. Se une con el foco dado F y a continuación se traza la mediatriz(o perpendicular por el punto medio) del segmento TF. La intersección de la mediatriz con la perpendicular por T a la directriz da como resultado un punto P que pertenece a la parábola. Repitiendo el proceso para diferentes puntos T se puede aproximar tantos puntos de la parábola como sea necesario.

De la construcción anterior se puede probar que la parábola es simétrica respecto a la línea perpendicular a la directriz y que pasa por el foco. Al punto de intersección de la parábola con tal línea (conocida como eje de la parábola) se le conoce como vértice de la parábola y es el punto cuya distancia a la directriz es mínima. La distancia entre el vértice y el foco se conoce como distancia focal o radio focal.

Semejanza de todas las parábolas

Dado que la parábola es una sección cónica, también puede describirse como la única sección cónica que tiene excentricidad . La unicidad se refiere a que todas las parábolas son semejantes, es decir, tienen la misma forma, salvo su escala.

Desafortunadamente, al estudiar analíticamente las parábolas (basándose en ecuaciones), se suele afirmar erróneamente que los parámetros de la ecuación cambian la forma de la parábola, haciéndola más ancha o estrecha. La verdad es que todas las parábolas tienen la misma forma, pero la escala (zoom) crea la ilusión de que hay parábolas de formas diferentes.

Un argumento geométrico informal es que al ser la directriz una recta infinita, al tomar cualquier punto y efectuar la construcción descrita arriba, se obtiene siempre la misma curva, salvo su escala, que depende de la distancia del punto a la directriz

Tangentes a la parábola

Un resultado importante en relación a las tangentes de una parábola establece:

La tangente biseca el ángulo entre el foco, el punto de tangencia y su proyección.

En lo sucesivo, F denotará el foco de una parábola, P un punto de la misma y T su proyección

...

Descargar como (para miembros actualizados) txt (6 Kb)
Leer 4 páginas más »
Disponible sólo en Clubensayos.com