ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matematica


Enviado por   •  19 de Octubre de 2012  •  563 Palabras (3 Páginas)  •  301 Visitas

Página 1 de 3

EL CAMPO ELÉCTRICO

Es un campo físico que es representado mediante un modelo que describe la interacción entre cuerpos y sistemas con propiedades de naturaleza eléctrica. Matemáticamente se describe como un campo vectorial en el cual una carga eléctrica puntual de valor sufre los efectos de una fuerza eléctrica dada por la siguiente ecuación:

(1)

En los modelos relativistas actuales, el campo eléctrico se incorpora, junto con el campo magnético, en campo tensorial cuadridimensional, denominado campo electromagnético Fμν.2.

Los campos eléctricos pueden tener su origen tanto en cargas eléctricas como en campos magnéticos variables. Las primeras descripciones de los fenómenos eléctricos, como la ley de Coulomb, sólo tenían en cuenta las cargas eléctricas, pero las investigaciones de Michael Faraday y los estudios posteriores de James Clerk Maxwell permitieron establecer las leyes completas en las que también se tiene en cuenta la variación del campo magnético.

DEFINICIÓN

La presencia de carga eléctrica en una región del espacio modifica las características de dicho espacio dando lugar a un campo eléctrico. Así pues, podemos considerar un campo eléctrico como una, región del espacio cuyas propiedades han sido modificadas por la presencia de una carga eléctrica, de tal modo que al introducir en dicho campo eléctrico una nueva carga eléctrica, ésta experimentará una fuerza.

DEFINICIÓN FORMAL

La definición más formal de campo eléctrico, válida también para cargas moviéndose a velocidades cercanas a la de la luz, surge a partir de calcular la acción de una partícula cargada en movimiento a través de un campo electromagnético.2 Este campo forma parte de un único campo electromagnético tensorial definido por un potencial cuadrivectorial de la forma:

(1)

Donde es el potencial escalar y es el potencial vectorial tridimensional. Así, de acuerdo al principio de mínima acción, se plantea para una partícula en movimiento en un espacio cuadridimensional:

(2)

Donde es la carga de la partícula, es su masa y la velocidad de la luz. Reemplazando (1) en (2) y conociendo que , donde es el diferencial de la posición definida y es la velocidad de la partícula, se obtiene:

(3)

El término dentro de la integral se conoce como el lagrangiano del sistema; derivando esta expresión con respecto a la velocidad se obtiene el momento de la partícula, y aplicando las ecuaciones de Euler-Lagrange se encuentra que la variación temporal de la cantidad de movimiento de la partícula es:

(4)

De donde se obtiene la fuerza total de la partícula. Los dos primeros términos son independientes de la velocidad de la partícula, mientras que el último depende de ella. Entonces a los dos primeros se les asocia

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com