Matematica
Enviado por martagomez • 21 de Febrero de 2013 • 555 Palabras (3 Páginas) • 351 Visitas
Propiedades de la unión de conjuntos:
1. Propiedad idempotente. Puede exponerse mediante la siguiente expresión, que por ser tan lógica, no necesita más explicación:
VA => A = A
2. Propiedad conmutativa. Es también evidente:
AUB = BUA
3. Propiedad asociativa. Dados tres conjuntos A, B y C se verifica que:
(AUB)UC = AU(BUC) = AUBUC
Se puede demostrar mediante un ejemplo sencillo. Sean: A = {m, n, p}, B ={j, k, l}, C = {r, p, l}.
El nuevo conjunto y éste unido con el conjunto C, dará como resultado el conjunto: (AUB)UC = {m, n, p,j,k,l,r}
ahora bien, si hacemos antes la unión de B con C tendremos: BUC = {j,k,l,r,p} que unido con el conjunto A nos da: AU(BUC) = {m, n, p, j,k,l,r,p}
Luego, los conjuntos (AUB)UC y AU(BUC) son iguales por estar formados por los mismos elementos.
Intersección de conjuntos. Se llama intersección de dos conjuntos A y B, y se representa por AnB, al nuevo conjunto que tiene por elementos todos los elementos comunes a A y a B. Es lógico que la intersección de dos conjuntos disjuntos sea el conjunto vacío (no tiene elementos).
Ejemplo: Dados los conjuntos A = { d, f g, h } y B = { b, c, d, f }, su intersección será: AnB = {d,f}
La representación gráfica de dicha intersección esta representada en la figura, en la cual la intersección es la parte rayada.
Propiedades de la intersección. Son las mismas que las de la unión; por tanto, las expresaremos de la forma siguiente:
1. Propiedad idempotente: VA => AnA = A
2. Propiedad conmutativa: AnB = BnA
•
Propiedad asociativa: (AnB)nC = An(BnC)
Propiedades comunes a la unión y a la intersección.
•
Ley de absorción. Tiene dos formas distintas que se expresan: An(AUB) = A y Au(BnC)
Expongamos un ejemplo como comprobación:
A = {1, 2, 3 , 4} y B = {1, 2, 3, 6}.
Hagamos primero la unión de A con B: AUB = {1,2,3,4,6}
y ahora, la intersección del mismo con el conjunto
A: An(AUB) = {1, 2, 3 , 4} = A
Análogamente:
AnB = {1, 2, 3}, AU(AnB) = {1, 2, 3 , 4} = A B) = { 1,2, 3, 4 } = A.
2. Ley distributiva. Tiene también dos formas de expresión: De la unión respecto de la intersección: (AnC)UC = (AUC)n(BUC)
De la intersección respecto de la unión: (AUB)nC = (AnC)U(BnC)
Estas dos propiedades comunes a las dos operaciones nos indican que ambas tienen la misma fuerza, existe entre ellas una completa analogía.
Diferencia de conjuntos y complementario
...