ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matematica


Enviado por   •  24 de Abril de 2013  •  899 Palabras (4 Páginas)  •  446 Visitas

Página 1 de 4

ALGEBRA DE FUNCIONES Y COMBINACION DE FUNCIONES

Algebra de funciones

Si dos funciones f y g están definidas para todos los números reales, entonces es posible hacer operaciones numéricas reales como la suma, resta, multiplicación y división (cociente) con f(x) y g(x).

Definición: La suma, resta, multiplicación y cociente de las funciones f y g son las funciones definidas por:

Cada función está en la intersección de los dominios de f y g, excepto que los valores de x donde g(x) = 0 se deben excluir del dominio de la función cociente.

Ejemplos para discusión:

1) Sea f(x) = x2 y g(x) = x - 1. Halla la suma, resta, multiplicación y cociente de las funciones f y g. Señala el dominio para cada una de ellas.

2) Sea:

Halla la suma, resta, multiplicación y cociente de las funciones. Indica cuál es el dominio para cada una de ellas.

Ejercicio de práctica: Sea f(x) = 3x y g(x) = x + 2. Halla la suma, resta, multiplicación y cociente de las funciones. ¿Cuál es el dominio en cada una de ellas?

Composición de funciones

Definición: Dadas las funciones f y g, la composición de f y g, se define por:

donde g(x) es el dominio de f. La composición de g y f se define por:

Ejemplos para discusión: Halla f(g(x)) y g(f(x)) para cada par de funciones y su dominio.

Notas:

1) El dominio f(g(x)) es subconjunto del dominio de g y el recorrido de f(g(x)) es subconjunto de recorrido de f.

2) Si las funciones f y g están definidas para todos los números reales, entonces también su composición f(g(x) está definida.

Ejercicio de práctica: Halla: f(g(x)), g(f(x)) y el dominio de cada composición si:

Álgebra de funciones

El desarrollo de las funciones nos lleva a generar una serie de reglas que permiten tomar decisiones acerca de los dominios y codominios, entre otros, esta combinación de operaciones algebraicas de las funciones:

Sean f y g dos funciones, definimos las siguientes operaciones:

Suma: (f + g)(x) = f(x) + g(x)

Diferencia: (f - g)(x) = f(x) - g(x)

Producto: (fg)(x) = f(x)g(x)

Cociente: (f/g)(x) = f(x)/g(x)

Los resultados de las operaciones entre funciones f,g nos conduce a analizar el dominio de las funciones, así para f

...

Descargar como (para miembros actualizados) txt (3 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com