Matematicas Discretas
Enviado por edva3000 • 5 de Septiembre de 2014 • 609 Palabras (3 Páginas) • 327 Visitas
DESARROLLO DE LA ACTIVIDAD
I: Consulte en internet cuál es el objeto de estudio de las matemáticas discretas. Tome mínimo tres definiciones y realice su propia conceptualización.
R/
- La matemática discreta es el estudio de las estructuras matemáticas que son fundamentalmente discreta en lugar de continua. A diferencia de los números reales que tienen la propiedad de variar "sin problemas", los objetos estudiados en matemáticas discretas - como números enteros, gráficos, y las declaraciones de la lógica - no varían sin problemas de esta manera, pero tienen valores distintos, separados. Por lo tanto, las matemáticas discretas excluye temas en "matemáticas continuas" como el cálculo y análisis.
- Matemáticas Discretas es la parte de la matemática encargada del estudio de los conjuntos discretos: finitos o infinitos numerables. En oposición a la matemática continua, que se encarga del estudio de conceptos como la continuidad y el cambio continúo, la matemática discreta estudia estructuras cuyos elementos pueden contarse uno por uno separadamente. Es decir, los procesos en matemática discreta son finitos y contables.
Conclusión:
La matemática discretas estudias conjuntos discretos cuyos elementos pueden contarse uno por uno, es decir que los procesos en matemáticas discretas son contables como los números enteros.
II: Realice los ejercicios a continuación:
1. Un Producto Cartesiano es un conjunto de pares ordenados (a, b) donde a es un elemento de un conjunto A y b es elemento de un conjunto B. Entonces una relación R es un subconjunto de pares ordenados del producto cartesiano A x B.
¿Cuál conjunto de los enunciados a continuación es relación?
a. A = {1,2,3,4}; B = {a, b, c}; R = {(1, a),(2, b),(3, c),(1,2)}
b. A = {a, b, c, d}; B = {1, 2, 3}; R = {(a, 1),(b,, 2),(c, 3),(d, d),(d, 4)}
c. A = {a, b, c, d}; B = {1, 2, 3}; R = {(a, 1),(b,, 2),(c, 3),(d, 4),(4, d)}
d. A = {a, b, c, d}; B = {1, 2, 3}; R = {(a, 1),(b,, 2),(c, 3),(d, 4),(d, 3)}
NOTA: verificando las respuestas dadas se concluye que ninguna es correcta.
2. Una relación R es un subconjunto de pares ordenados del producto cartesiano A x B. Dado un conjunto A = {1, 2, 3, 4} y R una relación binaria de A x A enunciada así R = {(a, b) b divide a y el cociente debe ser entero} La relación R es:
a. Vacío
b. {(1, 1),(2, 2),(3, 3),(4, 4)}
c. {(1, 1),(2, 2),(3, 3)}
d. A
3. La unión de dos conjuntos A y B es el conjunto cuyos elementos son exactamente los elementos de A ó B o de ambos.
Dados los conjuntos A = {a, b} y B = {c, d} La unión de A y B es:
a. {a, b, c}
b. {a, c, d}
c. { a, a, c, c}
d. {a, b, c, d}
4. La intersección de dos conjuntos A y B es el conjunto que tiene los elementos comunes de A y B.
...