ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matematicas Financieras


Enviado por   •  14 de Mayo de 2012  •  1.273 Palabras (6 Páginas)  •  654 Visitas

Página 1 de 6

1.1 Concepto de anualidad y aplicaciones principales

Anualidad: Se aplica a problemas financieros en los que existen un conjunto de pagos iguales a intervalos de tiempo regulares.

Aplicaciones típicas:

• Amortización de préstamos en abonos.

• Deducción de la tasa de interés en una operación de pagos en abonos

• Constitución de fondos de amortización

1.2 Tipos principales de anualidades

Vamos a distinguir dos tipos de anualidades:

(a) Anualidades ordinarias o vencidas cuando el pago correspondiente a un intervalo se hace al final del mismo, por ejemplo, al final del mes.

(b) Anualidades adelantadas, cuando el pago se hace al inicio del intervalo, por ejemplo al inicio del mes.

Ambos tipos de anualidades pueden aplicarse en un contexto de certeza, en cuyo caso se les llama anualidades ciertas o en situaciones caracterizadas por la incertidumbre, en cuyo caso se les conoce como anualidades contingentes. .

Para el caso de una anualidad ordinaria de n pagos, el despliegue de los datos en la línea del

tiempo es:

Pagos de valor

R R R R R R

|________|________|________|__. . .___|________|

| 1 2 3 n-1 n

Inicio fin

y para el caso de una anualidad anticipada de n pagos:

Pagos de valor

R R R R R R

|________|________|________|__. . .___|________|

| 1 2 3 n-1 n

Inicio fin

En estos problemas se supone que el conjunto de pagos es invertido a interés compuesto hasta el fin del plazo de la operación. Esta consideración es fundamental para definir el Valor futuro o monto de una anualidad y el Valor presente de la anualidad.

1.3 Valuación de Anualidades Ordinarias

(a) Valor futuro de una anualidad ordinaria

Responde a la pregunta: ¿Cual es el monto o valor futuro de una suma de pagos iguales distribuidos de manera uniforme a lo largo del tiempo?

(a) El valor futuro de un conjunto de n pagos vencidos de valor R cada uno es:

(1.1.)

R = valor del pago regular.

i = tasa de interés para cada uno de los intervalos de tiempo en que se ha dividido el plazo completo.

n = número total de intervalos de la operación.

Ejercicios:

1. Una persona se ha propuesto depositar $ 320 mensualmente durante 2 años (24 meses) en una 3cuenta bancaria que paga el 18 % anual de interés (1.5 % mensual). ¿Cuál será la cantidad acumulada al final de los dos años considerando que el banco capitaliza mensualmente los intereses?

Aplicando (1.1):

(b) Valor presente de la anualidad.

Responde a la pregunta: ¿Cuánto vale hoy un conjunto de n pagos iguales a realizar a intervalos regulares en el futuro?

La fórmula que responde a la pregunta es:

1.2.)

(1.2)

Ejercicios:

4.2. Una empresa tiene en su cartera de activos 10 pagarés de $ 200 cada uno y con vencimientos mensuales consecutivos. El primero de ellos vence dentro de un mes. La empresa necesita liquidez y planea venderlos a un banco, el cual ha aceptado la transacción considerando una tasa de interés de referencia del 24% anual (2% mensual). ¿Que cantidad recibirá la empresa si se realiza la operación? En otras palabras, ¿cuál es el valor presente de estos pagarés?

Datos: R = 200, i = 0.02, n = 10

Aplicando (1.2):

(b) El cálculo del pago regular (R)

Responde a la pregunta: ¿Cuántos pagos (o abonos) se deben hacer para alcanzar un determinado valor futuro o valor presente, según sea el caso?

Cuando conocemos el valor futuro, el pago regular se calcula como:

(1.3)

Ejercicios:

4.3 Una empresa tiene una deuda de $ 1,000,000 a pagar en un única exhibición dentro de 10 meses y desea pagar en 10 pagos mensuales iguales a fin de mes. ¿Cuál es el valor del pago mensual si la tasa de interés mensual es del 1% (12% anual)?

Datos: Valor futuro (S) = 1,000,000;

...

Descargar como (para miembros actualizados) txt (8 Kb)
Leer 5 páginas más »
Disponible sólo en Clubensayos.com