PRIMEROS PROBLEMAS GEOMÉTRICOS
Enviado por Yojuju • 6 de Agosto de 2014 • 278 Palabras (2 Páginas) • 730 Visitas
PRIMEROS PROBLEMAS GEOMÉTRICOS
Los griegos introdujeron los problemas de construcción, en los que cierta línea o
figura debe ser construida utilizando sólo una regla de borde recto y un compás.
Ejemplos sencillos son la construcción de una línea recta dos veces más larga que una
recta dada, o de una recta que divide un ángulo dado en dos ángulos iguales. Tres
famosos problemas de construcción que datan de la época griega se resistieron al
esfuerzo de muchas generaciones de matemáticos que intentaron resolverlos: la
duplicación del cubo (construir un cubo de volumen doble al de un determinado cubo),
la cuadratura del círculo (construir un cuadrado con área igual a un círculo
determinado) y la trisección del ángulo (dividir un ángulo dado en tres partes iguales).
Ninguna de estas construcciones es posible con la regla y el compás, y la
imposibilidad de la cuadratura del círculo no fue finalmente demostrada hasta 1882.
Los griegos, y en particular Apolonio de Perga, estudiaron la familia de curvas
conocidas como cónicas y descubrieron muchas de sus propiedades fundamentales.
Las cónicas son importantes en muchos campos de las ciencias físicas; por ejemplo,
las órbitas de los planetas alrededor del Sol son fundamentalmente cónicas.
Arquímedes, uno de los grandes científicos griegos, hizo un considerable número
de aportaciones a la geometría. Inventó formas de medir el área de ciertas figuras
curvas así como la superficie y el volumen de sólidos limitados por superficies curvas,
como paraboloides y cilindros. También elaboró un método para calcular una
aproximación del valor de pi (), la proporción entre el diámetro y la circunferencia
de un círculo y estableció que este número estaba entre 3 10/70 y 3 10/71.
...