PROPOSITO DEL CALCULO INTEGRAL Y DIFERENCIAL
Enviado por burguet23 • 14 de Mayo de 2013 • 1.045 Palabras (5 Páginas) • 1.553 Visitas
CÁLCULO DIFERENCIAL E INTEGRAL
PROPÓSITO GENERAL
El cálculo diferencial e integral ha sido el invento mas útil e inherente para el avance de la ciencia y la tecnología de todos los tiempos, como por ejemplo:
en la Estadística (para la propagación de incertidumbres, algoritmos, probabilidades financieras y Actuaria), para la Física (simplemente el concepto de velocidad, aceleración, ley de los gases, estructuras atómicas, la conservación de la energía, Trabajo, Potencia, colisiones, centros de masa etc) para la Química (en la estructura de la materia, transformaciones químicas, propagación de energía, teorías atómicas), en Matemáticas (cálculo de áreas y volúmenes), Biología (propagación de virus y bacterias), en la computación, telecomunicaciones, informática, juegos de azar, etc. bueno y así puedo hacer una lista enorme para que se pueda saber el papel tan importante del cálculo en nuestras vidas.
Durante el siglo XIX y XX el desarrollo científico y la creación de modelos teóricos fundados en sistemas de cálculo aplicables tanto en mecánica como en electromagnetismo y radioactividad, etc. así como en astronomía fue impresionante. Las geometrías no euclidianas encuentran aplicación en modelos teóricos de astronomía y física. El mundo deja de ser un conjunto de infinitas partículas que se mueven en un espacio-tiempo absoluto y se convierte en un espacio de configuración o espacio de fases de dimensiones que físicamente se hacen consistentes en la teoría de la relatividad, la mecánica cuántica, la teoría de cuerdas etc. que cambia por completo la imagen del mundo físico.
La lógica asimismo sufrió una transformación radical.14 La formalización simbólica fue capaz de integrar las leyes lógicas en un cálculo matemático, hasta el punto que la distinción entre razonamiento lógico-formal y cálculo matemático viene a considerarse como meramente utilitaria.
En la segunda mitad del siglo XIX y primer tercio del XX, a partir del intento de formalización de todo el sistema matemático, Frege, y de matematización de la lógica, (Bolzano, Boole, Whitehead, Russell) fue posible la generalización del concepto como cálculo lógico. Se lograron métodos muy potentes de cálculo, sobre todo a partir de la posibilidad de tratar como “objeto” conjuntos de infinitos elementos, dando lugar a los números transfinitos de Cantor.
Mediante el cálculo la lógica encuentra nuevos desarrollos como lógicas modales y lógicas polivalentes.
Los intentos de axiomatizar el cálculo como cálculo perfecto por parte de Hilbert y Poincaré, llevaron, como consecuencia de diversas paradojas (Cantor, Russell etc.) a nuevos intentos de axiomatización, Axiomas de Zermelo-Fraenkel y a la demostración de Gödel de la imposibilidad de un sistema de cálculo perfecto: consistente, decidible y completo en 1931, de grandes implicaciones lógicas, matemáticas y científicas.
En la actualidad, el cálculo en su sentido más general, en tanto que cálculo lógico interpretado matemáticamente como sistema binario, y físicamente hecho material mediante la lógica de circuitos electrónicos, ha adquirido una dimensión y desarrollo impresionante por la potencia de cálculo conseguida por los ordenadores, propiamente máquinas computadoras. La capacidad y velocidad de cálculo de estas máquinas hace lo que humanamente sería imposible: millones de operaciones por segundo.
El cálculo así utilizado se convierte en un instrumento fundamental de la investigación científica por las posibilidades que ofrece para la modelización de las teorías científicas, adquiriendo especial relevancia en ello el cálculo numérico.
El
...