ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

REGENERADORES


Enviado por   •  2 de Octubre de 2013  •  Examen  •  3.094 Palabras (13 Páginas)  •  952 Visitas

Página 1 de 13

6.4 REGENERADORES

En los motores de las turbinas de gas, la temperatura de los gases de escape que salen de la turbina suelen ser bastante mayor que la temperatura del aire que abandona el compresor. Por consiguiente, el aire de alta presión que sale del compresor puede calentarse transfiriéndole calor de los gases de escape calientes en un intercambiador de calor a contraflujo, el cual se conoce también como un regenerador o recuperador.

DIAGRAMA DE LA MÁQUINA DE TURBINA DE GAS CON REGENERADOR

La eficiencia térmica del ciclo Brayton aumenta debido a la regeneración, en virtud de que la porción de energía de los gases de escape que normalmente se libera en los alrededores ahora se usa para precalentar el aire que entra a la cámara de combustión. Esto, a su vez, disminuye los requerimientos de entrada de calor (y en consecuencia, de combustible) para la misma salida de trabajo neta. Observe, sin embargo que el empleo de un regenerador se recomienda solo cuando la temperatura de escape de la turbina es más alta que la temperatura de salida del compresor. De otro modo, el calor fluirá en la dirección inversa (hacia los gases de escape), y reducirá eficiencia. Ésta relación se encuentra en las máquinas de turbina de gas que operan a relaciones de presión muy altas.

Es evidente que un regenerador con una eficacia más alta ahorrará una gran cantidad de combustible puesto, que precalentará el aire a una temperatura más elevada, antes de la combustión. Sin embargo, lograr una eficacia mayor requiere el empleo de un regenerador más grande, el cual implica un precio superior y provoca una caída de presión más grande. En consecuencia, el uso de un regenerador con eficacia muy alta no puede justificarse económicamente a menos que los ahorros de combustible superen los gastos adicionales involucrados. La mayoría de los regeneradores utilizados en la práctica tienen eficacias por debajo de 0.85.

Por consiguiente la eficiencia térmica de un ciclo Brayton con regeneración depende de la relación entre la mínima y la máxima temperaturas, así como la relación de presión.

CICLO BRAYTON CON INTERENFRIAMIENTO, RECALENTAMIENTO Y REGENERACIÓN

El trabajo neto de un ciclo de turbina de gas es la diferencia entre la salida de trabajo de la turbina y la entrada de trabajo del compresor, y puede incrementarse si se reduce el trabajo del compresor o si aumenta el de la turbina o ambos. El trabajo requerido para comprimir un gas entre dos presiones especificadas puede disminuirse al efectuar el proceso de compresión en etapas y al enfriar el gas entre ellas, es decir, si se emplea con presión de etapas múltiples con interenfriamiento. Cuando aumenta el número de etapas, el proceso de compresión se vuelve isotérmico a la temperatura de entrada del compresor y el trabajo de compresión disminuye.

De igual modo, la salida de trabajo de un turbina que opera entra dos niveles de presión aumenta al expandir el gas en etapas y recalentarlo entre ellas, esto es, si se usa expansión de múltiples etapas con recalentamiento. Esto se lleva a cabo sin elevar la temperatura máxima en el ciclo. Cuando aumenta el número de etapas, el proceso de expansión se vuelve isotérmico. El argumento anterior se basa en un simple principio: el trabajo de compresión o expansión de flujo permanente es proporcional al volumen específico de fluido. Por consiguiente, el volumen especifico del fluido de trabajo debe ser los más bajo posible durante un proceso de compresión y lo más alto posible durante un proceso de expansión. Esto es precisamente lo que logran el interenfriamiento y el recalentamiento.

El fluido de trabajo sale del compresor a una temperatura menor y de la turbina a una temperatura más alta, cuando se usa en interenfriamiento y recalentamiento. Esto hace que la regeneración sea más atractiva ya que existe un mayor potencial para ella. Además los gases que salen del compresor pueden calentarse a una temperatura más alta antes de que entren a la cámara de combustión debido a la temperatura más elevada del escape de la turbina.

Un diagrama esquemático del arreglo físico de un ciclo de turbina de gas de dos etapas con interenfriamiento, recalentamiento y regeneración se muestra en la figura:

El gas entra a la primera etapa del compresor en el estado 1, se comprime de modo isentrópico hasta una presión intermedia P2 ; se enfría hasta una presión constante hasta el estado 3 (T3 = T1 ) y se comprime en la segunda etapa isentrópicamente hasta la presión final P4. En el estado 4 el gas entra al regenerador, donde se calienta hasta T5 a una presión constante. En un regenerador ideal, el gas saldrá del regenerador a la temperatura del escape de la turbina, es decir, T5 = T9. El proceso de adición de calor (o combustión) primario toma lugar entre los estados 5 y 6. El gas entra a la primera etapa de la turbina en el estado 6 y se expande isentrópicamente hasta el estado 7, donde entra al recalentador. Se recalienta a presión constante hasta el estado 8 (T8 = T6), donde entra a la segunda etapa de la turbina. El gas sale de la turbina en el estado 9 y entra al regenerador, donde se enfría hasta el estado 1 a presión constante. El ciclo se completa cuando el gas enfría hasta el estado inicial.

La relación de trabajo de retroceso de un ciclo de turbina de gas mejora debido al interenfriamiento y el recalentamiento. Sin embargo, esto no significa que la eficiencia térmica también mejorará. El hecho es que el interenfriamiento y el recalentamiento siempre disminuirán la eficiencia térmica a menos que se acompañen de la regeneración. Ya que el interenfriamiento disminuye la presión promedio a la cual se añade el calor, y el recalentamiento aumenta la temperatura promedio a la cual el calor se rechaza. Por tanto, en centrales eléctricas de turbina de gas, el interenfriamiento y recalentamiento se utilizan siempre en conjunción con la regeneración

6.5 CURVAS DE OPERACIÓN

Una turbina de gas, por lo general, no trabaja a plena potencia por lo que la variación del rendimiento es un factor de gran importancia económica, para adaptar una turbina de gas a una potencia dada se puede actuar sobre:

• La temperatura de admisión de los gases de la turbina

• El número de rpm del compresor n, lo que implica una modificación del gasto G y de la relación de compresión, que solo es posible cuando el alternador puede admitir variaciones de velocidad de alta amplitud.

El punto de funcionamiento viene definido por la intersección de las curvas características de cada máquina.

Curvas características de turbocompresores y turbinas

Curvas características de un turbocompresor

Curvas características de una turbina

Las dos

...

Descargar como (para miembros actualizados) txt (18 Kb)
Leer 12 páginas más »
Disponible sólo en Clubensayos.com