Rectas Paralelas
Enviado por ElferesGuevara • 29 de Junio de 2011 • 649 Palabras (3 Páginas) • 1.164 Visitas
La geometría euclidiana es aquella que estudia
¿Las rectas paralelas se cortan en el infinito?… …
Siempre hemos escuchado que dos rectas paralelas son aquellas que por mucho que se prolonguen nunca llegan a cortarse, pero también conocemos el concepto de que dos rectas paralelas se cortan en el infinito. ¿Cual de estas dos afirmaciones es verdadera? A continuación intentaremos dar respuesta al dilema ante el que nos encontramos.
Euclides fue un matemático y geómetra griego, que vivió alrededor del 300 a.C. Se le conoce como "El Padre de la Geometría" y fue el creador de la geometría que lleva su propio nombre.
las propiedades del plano y el espacio tridimensional. La presentación de ésta se hace mediante un sistema de axiomas que, a partir de un cierto número de postulados que se presumen verdaderos y a través de operaciones lógicas, genera nuevos postulados cuyo valor de verdad es también positivo. Euclides planteó cinco postulados en su sistema:
1. Dados dos puntos se puede trazar una y sólo una recta que los une.
2. Cualquier segmento puede prolongarse de forma continua en cualquier sentido.
3. Se puede trazar una circunferencia con centro en cualquier punto y de cualquier radio.
4. Todos los ángulos rectos son iguales.
5. Si una recta, al cortar a otras dos, forma ángulos internos menores a un ángulo recto, esas dos rectas prolongadas indefinidamente se cortan del lado en el que están los ángulos menores que dos rectos.
Este último postulado, que es conocido como el postulado de las paralelas, fue reformulado como:
5. Por un punto exterior a una recta, se puede trazar una única paralela a la recta dada.
Euclides asumió que todos sus postulados o axiomas eran auto-evidentes y por tanto hechos que no requerían demostración. Sin embargo, el quinto postulado resultó que si bien es compatible con los otro cuatro, es en cierto modo independiente. Es decir, tanto el quinto postulado como la negación del quinto postulado, son compatibles con los otros cuatro postulados. Las geometrías donde el quinto postulado no es válido se llaman geometrías no-euclidianas.
En el Renacimiento las nuevas necesidades de representación del arte y de la técnica empujan a ciertos humanistas a estudiar propiedades geométricas. Al descubrir la perspectiva y la sección, crean la necesidad de sentar las bases formales en la que cimentar las nuevas formas de geometría que ésta implica: la Geometría proyectiva, cuyos principios fundamentales aparecen en el siglo XVII:
• Dos puntos definen una recta.
• Todo par de rectas se cortan en un punto (cuando dos rectas son paralelas decimos que se cortan en un punto del infinito conocido como punto impropio).
A
...